Advertisement

Open Multiparty Interaction

  • Chiara Bodei
  • Linda Brodo
  • Roberto Bruni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7841)

Abstract

We present the link-calculus, a process calculus based on interactions that are multiparty, i.e., that may involve more than two processes and are open, i.e., the number of involved processes is not fixed or known a priori. Communications are seen as chains of links, that record the source and the target ends of each hop of interactions. The semantics of our calculus mildly extends the one of CCS in the version without message passing, and the one of π-calculus in the full version. Cardelli and Gordon’s Mobile Ambients, whose movement interactions we show to be inherently open multi-party, is encoded in our calculus in a natural way, thus providing an illustrative example of its expressiveness.

Keywords

Operational Semantic Label Transition System Reduction Rule Virtual Link Link Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bodei, C., Brodo, L., Degano, P., Gao, H.: Detecting and preventing type flaws at static time. Journal of Computer Security 18(2), 229–264 (2010)Google Scholar
  2. 2.
    Bodei, C., Degano, P., Priami, C.: Names of the π-calculus agents handled locally. Theor. Comput. Sci. 253(2), 155–184 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled transitions for mobile ambients (as synthesized via a graphical encoding). ENTCS 242(1), 73–98 (2009)MathSciNetGoogle Scholar
  4. 4.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Brodo, L.: On the expressiveness of the π-calculus and the mobile ambients. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 44–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bruni, R., Lanese, I.: Parametric synchronizations in mobile nominal calculi. Theor. Comput. Sci. 402(2-3), 102–119 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in pi-calculus. Nordic Journal of Computing 10(2), 70–98 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    de Boer, F.S., Palamidessi, C.: On the asynchronous nature of communication in concurrent logic languages: A fully abstract model based on sequences. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 99–114. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Ferrari, G.-L., Montanari, U., Tuosto, E.: A LTS semantics of ambients via graph synchronization with mobility. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 1–16. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proc. of POPL 1996, pp. 372–385. ACM Press (1996)Google Scholar
  13. 13.
    Francalanza, A., Hennessy, M.: A theory of system behaviour in the presence of node and link failure. Information and Computation 206(6), 711–759 (2008)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gardner, P., Laneve, C., Wischik, L.: Linear forwarders. Inf. Comput. 205(10), 1526–1550 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gordon, A., Cardelli, L.: Equational properties of mobile ambients. Math. Struct. in Comp. Sci. 13(3), 371–408 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gorrieri, R., Versari, C.: An Operational Petri Net Semantics for A2CCS. Fundam. Inform. 109(2), 135–160 (2011)MathSciNetMATHGoogle Scholar
  17. 17.
    Hausmann, D., Mossakowski, T., Schröder, L.: A coalgebraic approach to the semantics of the ambient calculus. Theor. Comput. Sci. 366(1-2), 121–143 (2006)MATHCrossRefGoogle Scholar
  18. 18.
    Laneve, C., Vitale, A.: The expressive power of synchronizations. In: Proc. of LICS 2010, pp. 382–391. IEEE Computer Society (2010)Google Scholar
  19. 19.
    Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. Journal of the ACM 52(6), 961–1023 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  21. 21.
    Milner, R.: Communicating and mobile systems: the π-calculus. CUP (1999)Google Scholar
  22. 22.
    Montanari, U., Sammartino, M.: Network conscious pi-calculus: a concurrent semantics. ENTCS 286, 291–306 (2012)Google Scholar
  23. 23.
    Nestmann, U.: On the expressive power of joint input. ENTCS 16(2) (1998)Google Scholar
  24. 24.
    De Nicola, R., Gorla, D., Pugliese, R.: Basic observables for a calculus for global computing. Information and Computation 205(10), 1491–1525 (2007)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Rathke, J., Sobociński, P.: Deriving structural labelled transitions for mobile ambients. Information and Computation 208(10), 1221–1242 (2010)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Vaandrager, F.W.: On the relationship between process algebra and input/output automata. In: Proc. of LICS 1991, pp. 387–398. IEEE Computer Society (1991)Google Scholar
  27. 27.
    Winskel, G.: Synchronization trees. Theor. Comput. Sci. 34(1-2), 33–82 (1984)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Wischik, L., Gardner, P.: Explicit fusions. Theor. Comput. Sci. 340(3), 606–630 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Chiara Bodei
    • 1
  • Linda Brodo
    • 2
  • Roberto Bruni
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell’InformazioneUniversità di SassariItaly

Personalised recommendations