Towards the Engineering of Chemical Communication Between Semi-Synthetic and Natural Cells

  • Pasquale Stano
  • Giordano Rampioni
  • Luisa Damiano
  • Francesca D’Angelo
  • Paolo Carrara
  • Livia Leoni
  • Pier Luigi Luisi


The recent advancements in semi-synthetic minimal cell (SSMC) technology pave the way for several interesting scenarios that span from basic scientific advancements to applications in biotechnology. In this short chapter we discuss the relevance of establishing chemical communication between synthetic and natural cells as an important conceptual issue and then discuss it as a new bio/chemical-information and communication technology. To this aim, the state of the art of SSMCs technology is shortly reviewed, and a possible experimental approach based on bacteria quorum sensing mechanisms is proposed and discussed.


Synthetic Biology Quorum Sense Natural Cell Lipid Vesicle Chemical Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work derived from our recent involvement in studies on the construction of semi-synthetic minimal cells, funded by the FP6-EU Program (SYNTHCELLS: 043359), HFSP (RGP0033/2007–C), ASI (I/015/07/0), PRIN2008 (2008FY7RJ4); and further expanded thanks to networking initiatives as SynBioNT (UK), and the COST Systems Chemistry action (CM0703). Studies about quorum sensing were founded by the Italian Ministry of University and Research (PRIN-2008-232P4H_003 and FIRB-2010-RBFR10LHD1_002) and by the Italian Cystic Fibrosis Research Foundation (Projects FFC 14/2010 and FFC 13/2011).


  1. 1.
    Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies, Studies in Computational Intelligence, pp. 49–86. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)CrossRefGoogle Scholar
  3. 3.
    Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems 109, 24–34 (2012)Google Scholar
  4. 4.
    Maturana, H.R., Varela, F.J.: De Máquinas y Seres Vivos. Editorial Universitaria, Santiago (1973)Google Scholar
  5. 5.
    Maturana, H.R., Varela, F.J.: Autopoiesis: the organization of the living. In: Maturana, H.R., Varela, F.J. (eds.) Autopoiesis and Cognition, pp. 59–134. Reidel Publishing Company, Dordrecht (1980)CrossRefGoogle Scholar
  6. 6.
    Maturana, H.R., Varela, F.J.: The Three of Knowledge. The Biological Roots of Human Understanding. Shimbhala, Boston (1987)Google Scholar
  7. 7.
    Cronin, L., Krasnogor, N., Davis, B.G., Alexander, C., Robertson, N., Steinke, J.H., Schroeder, S.L., Khlobystov, A.N., Cooper, G., Gardner, P.M., Siepmann, P., Whitaker, B.J., Marsh, D.: The imitation game – a computational chemical approach to recognizing life. Nat. Biotechnol. 24, 1203–1206 (2006)CrossRefGoogle Scholar
  8. 8.
    Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1, 377–383 (2009)CrossRefGoogle Scholar
  9. 9.
    Morowitz, H.J., Heinz, B., Deamer, D.W.: The chemical logic of a minimum protocell. Orig. Life Evol. Biosph. 18, 281–287 (1988)CrossRefGoogle Scholar
  10. 10.
    Morowitz, H.J.: Beginnings of Cellular Life. Yale University Press, New Haven and London (1992)Google Scholar
  11. 11.
    Stano, P., Luisi, P.L.: Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639–3653 (2010)CrossRefGoogle Scholar
  12. 12.
    Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F. (eds.): Protocells. Bridging Nonliving and Living Matter. The MIT Press, Cambridge (2009)Google Scholar
  13. 13.
    Forster, A.C., Church, G.M.: Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45 (2006)CrossRefGoogle Scholar
  14. 14.
    Stano, P., Carrara, P., Kuruma, Y., Souza, T., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21, 18887–18902 (2011)CrossRefGoogle Scholar
  15. 15.
    Oberholzer, T., Nierhaus, K.H., Luisi, P.L.: Protein expression in liposomes. Biochem. Biophys. Res. Commun. 261, 238–241 (1999)CrossRefGoogle Scholar
  16. 16.
    Souza, T., Stano, P., Luisi, P.L.: The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem 10, 1056–1063 (2009)CrossRefGoogle Scholar
  17. 17.
    Luisi, P.L., Allegretti, M., Souza, T., Steineger, F., Fahr, A., Stano, P.: Spontaneous protein crowding in liposomes: a new vista for the origin of cellular metabolism. Chembiochem 11, 1989–1992 (2010)CrossRefGoogle Scholar
  18. 18.
    Yu, W., Sato, K., Wakabayashi, M., Nakatshi, T., Ko-Mitamura, E.P., Shima, Y., Urabe, I., Yomo, T.: Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92, 590–593 (2001)CrossRefGoogle Scholar
  19. 19.
    Hosoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H., Yomo, T.: Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir 24, 13540–13548 (2008)CrossRefGoogle Scholar
  20. 20.
    Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003)CrossRefGoogle Scholar
  21. 21.
    The, S.-Y., Khnouf, R., Fan, H., Lee, A.P.: Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5, 044113 (2011)CrossRefGoogle Scholar
  22. 22.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., Ueda, T.: Cell free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001)CrossRefGoogle Scholar
  23. 23.
    Kuruma, Y., Stano, P., Ueda, T., Luisi, P.L.: A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta 1788, 567–574 (2009)CrossRefGoogle Scholar
  24. 24.
    Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. U. S. A. 101, 17669–17674 (2004)CrossRefGoogle Scholar
  25. 25.
    Parsek, M.R., Greenberg, E.P.: Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005)CrossRefGoogle Scholar
  26. 26.
    West, S.A., Griffin, A.S., Gardner, A., Diggle, S.P.: Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006)CrossRefGoogle Scholar
  27. 27.
    Fuqua, W.C., Winans, S.C., Greenberg, E.P.: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994)Google Scholar
  28. 28.
    Atkinson, S., Williams, P.: Quorum sensing and social networking in the microbial world. J. R. Soc. Interface 6, 959–978 (2009)CrossRefGoogle Scholar
  29. 29.
    Leduc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2, 3–7 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pasquale Stano
    • 1
  • Giordano Rampioni
    • 1
  • Luisa Damiano
    • 2
  • Francesca D’Angelo
    • 1
  • Paolo Carrara
    • 1
  • Livia Leoni
    • 1
  • Pier Luigi Luisi
    • 1
  1. 1.Department of SciencesUniversity of Roma TreRomeItaly
  2. 2.CERCO (Research Center on Complex Systems)University of BergamoBergamoItaly

Personalised recommendations