How to Integrate Electric Vehicles in the Future Energy System?

Chapter
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

Main challenges within the energy system of tomorrow are more volatile, less controllable and at the same time more decentralized electricity generation. Furthermore, the increasing research and development activities on electric vehicles (EV) make a significant share of electric vehicles within the passenger car fleet in 2030 more and more likely. This will lead to a further increase of power demand during peak hours. Answers to these challenges are seen, besides measures on the electricity supply side (e.g. investing in more flexible power plants or storage plants), in (1) grid extensions, which are expensive and time consuming due to local acceptance, and in (2) influencing electricity demand by different demand side management (DSM) approaches. Automatic delayed charging of electric vehicles as one demand side management approach can help to avoid peaks in household load curves and, even more, increase the low electricity demand during the night. This facilitates integrating more volatile regenerative power sources, too. Bidirectional charging (V2G) and storing of electricity extends the possibilities to integrate electric vehicles into the grid. But, comparing electricity storage costs and availability of electric vehicles with costs and technical conditions of other technologies leads to the conclusion, that vehicle to grid (V2G) is currently not competitive—but might be competitive in the future, e.g. within the electricity reserve market. In summary, the chapter gives an overview of the future electricity market with the focus on electric vehicles and argues for automatic delayed charging of electric vehicles due to economic and technical reasons.

References

  1. Barenschee ER (2010) Energiespeicherung und Lithium-Ionentechnologie. In: Proceedings of senior expert chemists annual meeting, BitterfeldGoogle Scholar
  2. BDEW (German Association of Energy and Water Industries) (2011) Abschätzung des Ausbaubedarfs in deutschen Verteilungsnetzen aufgrund von Photovoltaik- und Windeinspeisungen bis 2020. BerlinGoogle Scholar
  3. BMF (German Federal Ministry of Finance) (2010) AfA-Tabelle für die allgemein verwendbaren Anlagegüter. BonnGoogle Scholar
  4. BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety) (2010) Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global—“Leitstudie 2010”. BerlinGoogle Scholar
  5. BNetzA (German Federal Network Agency) (2011) Monitoringbericht 2011. BonnGoogle Scholar
  6. Bunzeck I, Feenstra CEJ, Paukovic M (2011) Preferences of potential users of electric cars related to charging—a survey in eight EU countries. Deliverable D3.2 of the Grid for Vehicles Project within the FP7 program of the European Commission, BrusselsGoogle Scholar
  7. Dallinger D, Krampe D, Wietschel M (2011) Vehicle-to-grid regulation reserves based on a dynamic simulation of mobility behavior. IEEE Trans Smart Grid 2(2):302–313CrossRefGoogle Scholar
  8. Davies J, Kurani KS (2010) Households’ plug-in hybrid electric vehicle recharging behavior: observed variation in households’ use of a 5 kWh blended PHEV-conversion. In: Working paper UCD-ITS-WP-10-04, Institute of Transportation Studies, University of California, DavisGoogle Scholar
  9. Deane JP, Gallachóir BPÓ, McKeogh EJ (2010) Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sustain Energy Rev 14:1293–1302CrossRefGoogle Scholar
  10. DENA (German Energy Agency) (2005) Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020 (DENA Netzstudie 1). BerlinGoogle Scholar
  11. DENA (German Energy Agency) (2010) Integration of renewable energy sources in the German power supply system from 2015–2020 with an Outlook to 2025—dena Grid Study II. BerlinGoogle Scholar
  12. EAC (Electricity Advisory Committee) (2011) Energy storage activities in the United States electricity grid. Washington, DCGoogle Scholar
  13. EC (European Comission) (2011) Proposal for the directive of the European Parliament and of the council on energy efficiency and repealing directives 2004/8/EC and 2006/32/EC, SEC(2011) 779 final, 22/06/2011. BrusselsGoogle Scholar
  14. Erdmenger Ch, Lehmann H, Müschen K, Tambke J, Mayr S, Kuhnhenn K (2009) A climate protection strategy for Germany—40 % reduction of CO2 emissions by 2020 compared to 1990. Energy Policy 37:158–165CrossRefGoogle Scholar
  15. EWI (Institute of Energy Economics at the University of Cologne), GWS (Institute of Economic Structures Research) & prognos (2010) Energieszenarien für ein Energiekonzept der Bundesregierung. Basel, Cologne, OsnabrückGoogle Scholar
  16. Göransson L, Karlsson S, Johnsson F (2009) Plug-in hybrid electric vehicles as a mean to reduce CO2 emissions from electricity production. In: Proceedings of EVS24, StavangerGoogle Scholar
  17. Hartmann N, Özdemir ED (2010) Impact of different utilization scenarios of electric vehicles on the German grid in 2030. J Power Sources 196(4):2311–2318CrossRefGoogle Scholar
  18. Heinrichs H, Eßer-Frey A, Jochem P, Fichtner W (2011) Zur Analyse der langfristigen Entwicklung des deutschen Kraftwerkparks—Zwischen europäischem Energieverbund und dezentraler Erzeugung. In: VDI-GET (ed) Optimierung in der Energiewirtschaft, VDI Publisher, DüsseldorfGoogle Scholar
  19. Hill DM, Agarwal AS, Ayello F (2012) Fleet operator risks for using fleets for V2G regulation. Energy Policy 41:221–231CrossRefGoogle Scholar
  20. Hillemacher L, Eßer-Frey A, Fichtner W (2011) Preis- und Effizienzsignale im MeRegio Smart Grid Feldtest—Simulationen und erste Ergebnisse. In: Proceedings of IEWT (Internationale Energiewirtschaftstagung), WienGoogle Scholar
  21. IIP (Institute for Industrial Production) (2011) Internal database of electricity storage technologiesGoogle Scholar
  22. Infas (Institute for Applied Social Sciences), & DLR (German Aerospace Centre) (2008) MID—Mobilität in Deutschland 2008. BerlinGoogle Scholar
  23. Jochem P, Feige J, Kaschub T, Fichtner W (2011) Increasing demand for battery applications. In: Proceedings of 6th international renewables energy storage conference and exhibition, BerlinGoogle Scholar
  24. Kalhammer FR, Kopf BM, Swan DH, Roan VP, Walsh MP (2007) Status and prospects for zero emissions vehicle technology—report of the ARB independent expert panel 2007. California Environmental Protection Agency—Air Resources Board, CaliforniaGoogle Scholar
  25. Kaschub T, Mültin M, Fichtner W, Schmeck H, Kessler A (2010) Smart charging of electric vehicles in the context of an urban district. In: VDE congress E-mobility, LeipzigGoogle Scholar
  26. Kaschub T, Jochem P, Fichtner W (2011) Integration von Elektrofahrzeugen und Erneuerbaren Energien ins Elektrizitätsnetz - eine modellbasierte regionale Systemanalyse. In: 7. Internationale Energiewirtschaftstagung, TU WienGoogle Scholar
  27. Kempton W, Tomić J (2005a) Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J Power Sources 144(1):268–279CrossRefGoogle Scholar
  28. Kempton W, Tomić J (2005b) Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J Power Sources 144(1):280–294CrossRefGoogle Scholar
  29. Kley F (2011) Ladeinfrastrukturen für Elektrofahrzeuge. Frauenhofer Publisher, Karlsruher Institut für Technologie, KarlsruheGoogle Scholar
  30. Leitinger C, Litzlbauer M (2011) Netzintegration und Ladestrategien der Elektromobilität. Elektrotechnik und Informationstechnik 128(1–2):10–15Google Scholar
  31. Mez L (1997) The German electricity reform attempts: reforming co-optive networks. In: Midttun A (ed) European electricity systems in transition. Elsevier, Amsterdam, pp 231–252CrossRefGoogle Scholar
  32. Nagl S, Fürsch M, Paulus M, Richter J, Trüby J, Lindenberger D (2011) Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050. Utilities Policy 19:185–192CrossRefGoogle Scholar
  33. Oswald BR (2009) Optionen im Stromnetz für Hoch- und Höchstspannung: Freileitung/Erdkabel, Drehstrom/Gleichstrom. In: Proceedings of Netz-Event 14. Mai 2009: Freileitung/ErdkabelGoogle Scholar
  34. Paetz A-G, Dütschke E, Schäfer A (2011) Die Last mit der Lastkontrolle. Energie & Management, 12/2011, 19Google Scholar
  35. Pehnt M, Helms H, Lambrecht U, Dallinger D, Wietschel M, Heinrichs H, Kohrs R, Link J, Trommer S, Pollok T, Behrens P (2011) Elektroautos in einer von erneuerbaren Energien geprägten Energiewirtschaft. Zeitschrift für Energiewirtschaft 35(3):221–234CrossRefGoogle Scholar
  36. Pesaran A (2007) Battery choices and potential requirements for plug-in hybrids. In: National renewable energy laboratory (NREL), plug-in hybrid electric truck workshop, hybrid truck users forum, Los AngelesGoogle Scholar
  37. Pollok T, Szszechowicz E, Matrose C, Schnettler A, Stöckl G, Kerber G, Lödl M, Witzmann R, Behrens P (2010) Electric mobility fleet test—grid management strategies with electric vehicle fleets. In: VDE-Kongress 2010, LeipzigGoogle Scholar
  38. Pollok T, Dederichs T, Smolka T, Theisen T, Schowe von der Brelie B, Schnettler A (2009) Technical assessment of dispersed electric vehicles in medium voltage distribution networks. CIRED, 0887. PragueGoogle Scholar
  39. RB (Roland Berger) (2010) Electro-mobility—challenges and opportunities for Europe. European Economic and Social Committee, BrusselsGoogle Scholar
  40. Regelleistung (2011) Own evaluation of data from www.regelleistung.net in the time period 12.07.11 until 11.12.11
  41. Schäfer T (2009) Batterietechnologie: Trends, Entwicklungen, Anwendungen. In: Proceedings of 3rd Expert Forum Leipzig. LeipzigGoogle Scholar
  42. Szczechowicz E, Pollok T, Schnettler A (2011) Economic assessment of electric vehicle fleets providing ancillary services. CIRED, 0967. FrankfurtGoogle Scholar
  43. Stöckl G, Witzmann R, Eckstein J (2011) Analyzing the capacity of low voltage grids for electric vehicles. In: IEEE international electrical power and energy conference, WinnipegGoogle Scholar
  44. Tomić J, Kempton W (2007) Using fleets of electric-drive vehicles for grid support. J Power Sources 168:459–468CrossRefGoogle Scholar
  45. UCTE (Union for the Co-ordination of Transmission of Electricity) (2009) Operation handbook: policy 1: load-frequency control. V3.0 rev15 01.04.2009, BrusselsGoogle Scholar
  46. VDE (German Association for Electrical, Electronic and Information Technologies) (2008) Energiespeicher in Stromversorgungssystemen mit hohem Anteil erneuerbarer Energieträger—Bedeutung, Stand der Technik, Handlungsbedarf. Power Engineering Society (ETG). BerlinGoogle Scholar
  47. van Vliet O, Brouwer AS, Kuramochi T, van den Broek M, Faaij A (2011) Energy use, cost and CO2 emissions of electric cars. J Power Sources 196(4):2298–2310CrossRefGoogle Scholar
  48. Waraich RA, Galus MD, Dobler C, Balmer M, Andersson G, Axhausen KW (2009) Plug-in hybrid electric vehicles and smart grid: investigations based on a micro-simulation. In: Proceedings of 12th international conference on travel behaviour research, JaipurGoogle Scholar
  49. Weiller C (2011) Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States. Energy Policy 39:3766–3778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Karlsruhe Institute for Technology (KIT), Institute for Industrial Production (IIP)KarlsruheGermany

Personalised recommendations