Advertisement

Strongly Correlated Intermetallics: \(\mathbf FeSb _\mathbf{2}\)

  • Martin Søndergaard
  • Simon Johnsen
  • Peijie Sun
  • Ye Sun
  • Simone Cenedese
  • Carlo Gatti
  • Frank Steglich
  • Bo Brummerstedt IversenEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 182)

Abstract

\({\mathrm{FeSb }}_{2}\) exhibits extraordinary physical properties with a colossal thermopower reaching 45 mV/K at \(\sim \)10 K, while maintaining fairly low electrical resistivity. This results in extremely high thermoelectric power factors exceeding 2,000 \(\upmu {\mathrm{W }}/({\mathrm{K }}^{2} \cdot \,{\mathrm{cm }})\). If the thermal conductivity can be reduced to a few W/(K\(\cdot \)m), then a thermoelectric figure of merit of unity is within reach at cryogenic temperatures opening up for a new solid state cooling technology. Furthermore, the physical properties of \(\mathrm{FeSb }_{2}\) are also of immense fundamental interest since the material is believed to be a strongly correlated narrow band gap semiconductor. In the last decade a wide range of studies have explored the synthesis, structure and properties of \(\mathrm{FeSb }_{2}\) and related materials, and here an overview of the efforts is provided.

Keywords

Thermoelectric Property Seebeck Coefficient Lattice Thermal Conductivity Large Single Crystal Transport Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, Science 287, 1024–1027 (2000)CrossRefGoogle Scholar
  2. 2.
    G.E. Smith, R. Wolfe, J. Appl. Phys. 33, 841–846 (1962)CrossRefGoogle Scholar
  3. 3.
    G.D. Mahan, Solid State Phys. 51, 81–157 (1998)Google Scholar
  4. 4.
    P.S. Riseborough, Adv. Phys. 49, 257–320 (2000)CrossRefGoogle Scholar
  5. 5.
    J.K. Freericks, D.O. Demchenko, A.V. Joura, V. Zlatic, Phys. Rev. B 68, 195120 (2003)CrossRefGoogle Scholar
  6. 6.
    T. Saso, K. Urasaki, J. Phys. Chem. Solids 63, 1475–1478 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Grenzebach, G. Czycholl, Physica B 359–361, 732–734 (2005)CrossRefGoogle Scholar
  8. 8.
    B.C. Sales, E.C. Jones, B.C. Chakoumakos, J.A. Fernandez-Baca, H.E. Harmon, J.W. Sharp, E.H. Volckmann, Phys. Rev. B 50, 8207–8213 (1994)CrossRefGoogle Scholar
  9. 9.
    C.D.W. Jones, K.A. Regan, F.J. DiSalvo, Phys. Rev. B 58, 16057–16063 (1998)CrossRefGoogle Scholar
  10. 10.
    S. Paschen, in Thermoelectrics handbook: macro to nano, ed. D.M. Rowe (CRC press, Boca Raton, 2006), pp. 15-11–15-20Google Scholar
  11. 11.
    R.J. Gambino, W.D. Grobman, A.M. Toxen, Appl. Phys. Lett. 22, 506–507 (1973)CrossRefGoogle Scholar
  12. 12.
    N. Ali, S.B. Woods, J. Appl. Phys 57, 3182–3184 (1985)CrossRefGoogle Scholar
  13. 13.
    S.R. Harutyunyan, V.H. Vardanyan, A.S. Kuzanyan, V.R. Nikoghosyan, S. Kunii, K.S. Wood, A.M. Gulian, Appl. Phys. Lett. 83, 2142–2144 (2003)CrossRefGoogle Scholar
  14. 14.
    H.J. Vandaal, P.B. Vanaken, K.H.J. Buschow, Phys. Lett. A. A 49, 246–248 (1974)Google Scholar
  15. 15.
    T. Takabatake, T. Sasakawa, J. Kitagawa, T. Suemitsu, Y. Echizen, K. Umeo, M. Sera, Y. Bando, Physica B 328, 53–57 (2003)CrossRefGoogle Scholar
  16. 16.
    D.H. Damon, R.C. Miller, A. Sagar, Phys. Rev. 138, A636–645 (1965)CrossRefGoogle Scholar
  17. 17.
    A. Bentien, G.K.H. Madsen, S. Johnsen, B.B. Iversen, Phys. Rev. B 74, 205105 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, F. Steglich, Europhys. Lett. 80, 17008 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Petrovic, J.W. Kim, S.L. Bud’ko, A.I. Goldman, P.C. Canfield, W. Choe, G.J. Miller, Phys. Rev. B 67, 155205 (2003)CrossRefGoogle Scholar
  20. 20.
    C. Petrovic, Y. Lee, T. Vogt, N.D. Lazarov, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 72, 045103 (2005)CrossRefGoogle Scholar
  21. 21.
    F. Hulliger, E. Mooser, J. Phys. Chem. Solids 26, 429–433 (1965)CrossRefGoogle Scholar
  22. 22.
    H. Takahashi, Y. Yasui, I. Terasaki, M. Sato, J. Phys. Soc. Jpn. 80, 054708 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Takahashi, R. Okazaki, Y. Yasui, I. Terasaki, Phys. Rev. B 84, 205215 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Herzog, M. Marutzky, J. Sichelschmidt, F. Steglich, S. Kimura, S. Johnsen, B.B. Iversen, Phys. Rev. B 82, 245205 (2010)CrossRefGoogle Scholar
  25. 25.
    J.M. Tomczak, K. Haule, T. Miyake, A. Georges, G. Kotliar, Phys. Rev. B 82, 085104 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Hu, V.F. Mitrovic, C. Petrovic, Appl. Phys. Lett. 92, 182108 (2008)CrossRefGoogle Scholar
  27. 27.
    P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, F. Steglich, Phys. Rev. B 79, 153308 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Klein, D. Zur, D. Menzel, J. Schoenes, K. Doll, J. Roder, F. Reinert, Phys. Rev. Lett. 101, 046406 (2008)CrossRefGoogle Scholar
  29. 29.
    D. Menzel, P. Popovich, N.N. Kovaleva, J. Schoenes, K. Doll, A.V. Boris, Phys. Rev. B 79, 165111 (2009)CrossRefGoogle Scholar
  30. 30.
    P. Sun, M. Sondergaard, Y. Sun, S. Johnsen, B.B. Iversen, F. Steglich, Appl. Phys. Lett. 98, 072105 (2011)CrossRefGoogle Scholar
  31. 31.
    V. Jaccarino, G.K. Wertheim, J.H. Wernick, L.R. Walker, S. Arajs, Phys. Rev. 160, 476–482 (1967)CrossRefGoogle Scholar
  32. 32.
    R. Hu, V.F. Mitrovic, C. Petrovic, Phys. Rev. B 76, 115105 (2007)CrossRefGoogle Scholar
  33. 33.
    R. Hu, V.F. Mitrovic, C. Petrovic, Phys. Rev. B 74, 195130 (2006)CrossRefGoogle Scholar
  34. 34.
    R. Hu, K.J. Thomas, Y. Lee, T. Vogt, E.S. Choi, V.F. Mitrovic, R.P. Hermann, F. Grandjean, P.C. Canfield, J.W. Kim, A.I. Goldman, C. Petrovic, Phys. Rev. B 77, 085212 (2008)CrossRefGoogle Scholar
  35. 35.
    R. Hu, R.P. Hermann, F. Grandjean, Y. Lee, J.B. Warren, V.F. Mitrovic, C. Petrovic, Phys. Rev. B 76, 224422 (2007)CrossRefGoogle Scholar
  36. 36.
    P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, F. Steglich, Appl. Phys. Express 2, 091102 (2009)CrossRefGoogle Scholar
  37. 37.
    T.H. Geballe, G.W. Hull, Phys. Rev. 94, 1134–1140 (1954)CrossRefGoogle Scholar
  38. 38.
    T.H. Geballe, G.W. Hull, Phys. Rev. 98, 940–947 (1955)CrossRefGoogle Scholar
  39. 39.
    L. Weber, E. Gmelin, Appl. Phys. A-Mater. 53, 136–140 (1991)CrossRefGoogle Scholar
  40. 40.
    M.E. Brinson, W. Dunstant, J. Phys. C Solid State 3, 483–491 (1970)CrossRefGoogle Scholar
  41. 41.
    A.V. Inyushkin, A.N. Taldenkov, V.I. Ozhogin, K.M. Itoh, E.E. Haller, Phys. Rev. B 68, 153203 (2003)CrossRefGoogle Scholar
  42. 42.
    I.A. Zaliznyak, A.T. Savici, V.O. Garlea, R.W. Hu, C. Petrovic, Phys. Rev. B 83, 184414 (2011)CrossRefGoogle Scholar
  43. 43.
    H. Okamoto, J. Phase Equilib. 20, 166–166 (1999)Google Scholar
  44. 44.
    A.K.L. Fan, G.H. Rosenthal, A. Wold, H.L. McKinzie, J. Solid State Chem. 5, 136–143 (1972)CrossRefGoogle Scholar
  45. 45.
    P.J. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, F. Steglich, Dalton T. 39, 1012–1019 (2010)CrossRefGoogle Scholar
  46. 46.
    G. Rosenthal, R. Kershaw, A. Wold, Mater. Res. Bull. 7, 479–487 (1972)CrossRefGoogle Scholar
  47. 47.
    B.R. Pamplin, Crystal Growth (Pergamon press, Oxford, 1975)Google Scholar
  48. 48.
    K. Wang, R. Hu, C. Petrovic, Condens. Matter Phys. 11973, 3 (2011)Google Scholar
  49. 49.
    A. Perucchi, L. Degiorgi, R. Hu, C. Petrovic, V.F. Mitrovic, Eur. Phys. J. B. 54, 175–183 (2006)CrossRefGoogle Scholar
  50. 50.
    N. Lazarevic, Z.V. Popovic, R. Hu, C. Petrovic, Phys. Rev. B 81, 144302 (2010)CrossRefGoogle Scholar
  51. 51.
    P.C. Canfield, Z. Fisk, Philos. Mag. Part B 65, 1117–1123 (1992)CrossRefGoogle Scholar
  52. 52.
    M.S. Diakhate, R.P. Hermann, A. Möchel, I. Sergueev, M. Søndergaard, M. Christensen, M.J. Verstraete, Phys. Rev. B 84, 125210 (2011)CrossRefGoogle Scholar
  53. 53.
    C. Villevieille, B. Fraisse, M. Womes, J.-C. Jumas, L. Monconduit, J. Power Sources 189, 324–330 (2009)CrossRefGoogle Scholar
  54. 54.
    S. Zhu, W. Xie, D. Thompson, T. Holgate, M. Zhou, Y. Yan, T.M. Tritt, J. Mater. Res. 26, 1894–1899 (2011)CrossRefGoogle Scholar
  55. 55.
    J. Xie, X.B. Zhao, G.S. Cao, M.J. Zhao, Y.D. Zhong, L.Z. Deng, Mater. Lett. 57, 4673–4677 (2003)CrossRefGoogle Scholar
  56. 56.
    N.R.C. Recknagel, P. Höhn, W. Schnelle, H. Rosner, Yu. Grin, A. Leithe-Jasper, Sci. Technol. Adv. Mater. 8, 357–363 (2007)CrossRefGoogle Scholar
  57. 57.
    A. Datta, G.S. Nolas, Eur. J. Inorg. Chem. 2012, 55–58 (2012)CrossRefGoogle Scholar
  58. 58.
    H.-Y. Qin, J. Xie, J.-L. Mi, J. Tu, X.-B. Zhao, Acta Phys. Chim. Sin. 22, 1555–1559 (2006)Google Scholar
  59. 59.
    L. Kumari, W. Li, J.Y. Huang, P.P. Provencio, J. Phys. Chem. C 114, 9573–9579 (2010)CrossRefGoogle Scholar
  60. 60.
    H. Zhao, M. Pokharel, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, Z. Ren, Appl. Phys. Lett. 99, 163101–163103 (2011)CrossRefGoogle Scholar
  61. 61.
    A. Dargys, J. Kundrotas, J. Phys. Chem. Solids 44, 261–267 (1983)CrossRefGoogle Scholar
  62. 62.
    R.A. Laudise, W.A. Sunder, R.L. Barns, G.W. Kammlott, A.F. Witt, D.J. Carlson, J. Cryst. Growth 102, 21–30 (1990)CrossRefGoogle Scholar
  63. 63.
    D.H. Damon, R.C. Miller, P.R. Emtage, Phys. Rev. B 5, 2175–2185 (1972)CrossRefGoogle Scholar
  64. 64.
    M. Sondergaard, M. Christensen, L. Bjerg, K.A. Borup, P. Sun, F. Steglich, B.B. Iversen, Dalton T. 41, 1278–1283 (2011)CrossRefGoogle Scholar
  65. 65.
    R.K. Sharma, Y.K. Sharma, Indian J. Pure Ap. Phy. 44, 325–329 (2006)Google Scholar
  66. 66.
    R. Hu, V.F. Mitrovic, C. Petrovic, Phys. Rev. B 79, 064510 (2009)CrossRefGoogle Scholar
  67. 67.
    P. Sun, M. Søndergaard, B.B. Iversen, F. Steglich, Ann. Phys. (Berlin) 523, 612–620 (2011)CrossRefGoogle Scholar
  68. 68.
    J.B. Goodenough, J. Solid State Chem. 5, 144–152 (1972)CrossRefGoogle Scholar
  69. 69.
    G.Brostige, A. Kjekshus, Acta Chem. Scand. 24, 2993–3012 (1970)Google Scholar
  70. 70.
    A.V. Lukoyanov, V.V. Mazurenko, V.I. Anisimov, M. Sigrist, T.M. Rice, Eur. Phys. J. B 53, 205–207 (2006)CrossRefGoogle Scholar
  71. 71.
    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco, M. Llunell, CRYSTAL06 User’s Manual (University of Torino, Torino, 2006)Google Scholar
  72. 72.
    S. Cenedese, C. Gatti, M. S. Schmøkel, B. B. Iversen, In preparationGoogle Scholar
  73. 73.
    J. Kunes, V.I. Anisimov, Phys. Rev. B 78, 033109 (2008)CrossRefGoogle Scholar
  74. 74.
    Y. Sun, S. Johnsen, P. Eklund, M. Sillassen, J. Bottiger, N. Oeschler, P. Sun, F. Steglich, B.B. Iversen, J. Appl. Phys 106, 033710–033714 (2009)CrossRefGoogle Scholar
  75. 75.
    Y. Sun, E. Zhang, S. Johnsen, M. Sillassen, P.J. Sun, F. Steglich, J. Bottiger, B.B. Iversen, J. Phys. D-Appl. Phys. 43, 205402 (2010)CrossRefGoogle Scholar
  76. 76.
    J.S. Zhang, W.L. Luan, H. Huang, Y.S. Qi, S.T. Tu, Sens. Actuator B-Chem. 128, 266–272 (2007)CrossRefGoogle Scholar
  77. 77.
    I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nanotechnol. 4, 235–238 (2009)CrossRefGoogle Scholar
  78. 78.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597–602 (2001)CrossRefGoogle Scholar
  79. 79.
    M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, H. Tsukamoto, J. Appl. Phys 104, 084302 (2008)CrossRefGoogle Scholar
  80. 80.
    Y. Sun, E. Zhang, S. Johnsen, M. Sillassen, P. Sun, F. Steglich, J. Bottiger, B.B. Iversen, Thin Solid Films 519, 5397–5402 (2011)CrossRefGoogle Scholar
  81. 81.
    Y. Sun, S. Canulescu, P. Sun, F. Steglich, N. Pryds, J. Schou, B.B. Iversen, Appl. Phys. A-Mater. 104, 883–887 (2011)CrossRefGoogle Scholar
  82. 82.
    Y. Sun, S. Canulescu, P. Sun, F. Steglich, N. Pryds, J. Schou, B.B. Iversen, Mater. Chem. Phys. 129, 105–108 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Søndergaard
    • 1
  • Simon Johnsen
    • 1
  • Peijie Sun
    • 2
  • Ye Sun
    • 3
  • Simone Cenedese
    • 4
  • Carlo Gatti
    • 4
  • Frank Steglich
    • 2
  • Bo Brummerstedt Iversen
    • 1
    Email author
  1. 1.Center for Materials Crystallography, Department of Chemistry and iNANOAarhus UniversityAarhus CDenmark
  2. 2.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  3. 3.Condensed Matter Science and Technology Institute, Harbin Institute of TechnologyHarbinChina
  4. 4.Istituto di Scienze e Tecnologie Molecolari del CNR (CNR-ISTM) and Dipartimento di ChimicaUniversità di MilanoMilanoItaly

Personalised recommendations