Thermoelectric Nanomaterials pp 365-382

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 182) | Cite as

Solar TE Converter Applications

  • Anke Weidenkaff
  • Matthias Trottmann
  • Petr Tomeš
  • Clemens Suter
  • Aldo Steinfeld
  • Angelika Veziridis


Thermoelectricity does not only serve to profitably recover waste heat from many technical processes but also to exploit renewable energy resources for power generation. Conversion of concentrated solar radiation for decentralized electricity supply is a very promising application field for thermoelectric (TE) devices. However, experimental and theoretical studies with high-temperature resistant thermoelectric oxide modules (TOMs) reveal that 60 % of the incident solar radiation is lost due to reradiation and only 20 % is available for electricity conversion. Calculations with a heat transfer model show that this loss can be substantially reduced from 60 % to only 4 % by using a solar cavity receiver instead of directly irradiated TE modules. The fraction of actually usable solar power can thereby be increased from 20 to 70 %. Despite the improved exploitation of solar radiation, solar-to-electricity efficiency of TOM converters continues to be low due to the still low Figure of Merit ZT of oxide materials. This disadvantage may in part be compensated by higher temperature differences resulting in higher conversion efficiencies. However, due to the temperature dependence of TE properties the use of a single material at a large temperature difference is not ideal. Preferably, a stack of different materials, each operating in its most efficient temperature range, should be applied. Calculations with the heat transfer model show that with a solar cavity-receiver packed with dual-stage cascaded modules containing—in addition to Bi-Te—a TE oxide available at present \(({\mathrm{ZT }}\,=\,0.36)\) a solar-to-electricity efficiency of 7.4 % can be achieved. With future advanced oxide materials \(({\mathrm{ZT }}\,=\,1.7)\) an efficiency of even 20.8 % seems to be realistic.


  1. 1.
    International Energy Outlook (2011),
  2. 2.
    Concentrating Solar Power Global Outlook 09. GreenpeaceInternational, SolarPACES, and ESTELA (2009)Google Scholar
  3. 3.
    D. Kraemer, B. Poudel, G. Chen, High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)CrossRefGoogle Scholar
  4. 4.
    S.A. Omera, D.G. Inield, Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation. Energy Conver. Manage. 41, 737–756 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Eswararmoorthy, S. Shanmugam, Thermodynamic analysis of solar parabolic dish thermoelectric generator. Int. J. Renew. Energy Technol. 1, 348–360 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Naito, Y. Kohsaka, D. Cooke, H. Arashi, Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system. Solar Energy 58, 191–195 (1996)CrossRefGoogle Scholar
  7. 7.
    A. Weidenkaff, R. Robert, M.H. Aguirre, L. Bocher, T. Lippert, S. Canulescu, Development of thermoelectric oxides for renewable energy conversion technologies. Renew. Energy 33, 342–347 (2008)CrossRefGoogle Scholar
  8. 8.
    D.M. Rowe, A high performance solar powered thermoelectric generator. Appl. Energy 8, 269–273 (1981)CrossRefGoogle Scholar
  9. 9.
    P. Tomeš, M. Trottmann, A. Weidenkaff, C. Suter, P. Haueter, A. Steinfeld, Thermoelectric oxide modules (TOMs) applied in direct conversion of simulated solar radiation into electrical energy. Materials 3, 2801–2814 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Tome\(\breve{s}\), R. Robert, L. Bocher, M. Trottmann, M.H. Aguirre, A. Weidenkaff, P. Haueter, A. Steinfeld, J. Hejtmánek, Direct conversion of simulated solar radiation into electrical energy by a perovskite thermoelectric oxide module (TOM), in Proceedings of Materials Science and Technology Conference and Exhibition, MS &T ‘08, vol. 1, pp. 429–435 (2008)Google Scholar
  11. 11.
    S.S. Kim, F. Yin, Y. Kagawa, Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules. J. Alloys Compd. 419, 306–311 (2006)CrossRefGoogle Scholar
  12. 12.
    O. Yamashita, S. Sugihara, High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit. J. Mater. Sci. 40, 6439–6444 (2005)CrossRefGoogle Scholar
  13. 13.
    E.S. Reddy, J.G. Noudem, S. Hebert, C. Goupil, Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D Appl. Phys. 38, 3751–3755 (2005)CrossRefGoogle Scholar
  14. 14.
    W. Shin, N. Muruyama, K. Ikeda, S. Sago, Thermoelectric power generation using Li-doped NiO and (Ba, Sr)\({{\text{ PbO }}_{3}}\) module. J. Power Sources 103, 80–85 (2001)CrossRefGoogle Scholar
  15. 15.
    R. Funahashi, M. Mikami, T. Mihara, S. Urata, N. Ando, A portable thermoelectric-power-generating module composed of oxide devices. J. Appl. Phys. 99, 066117 (2006)CrossRefGoogle Scholar
  16. 16.
    R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Oxide single crystal with high thermoelectric performance in air. Japan. J. Appl. Phys. 39, 1127–1129 (2000)CrossRefGoogle Scholar
  17. 17.
    R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, K. Mikami, \({{\text{ Ca }}_{2.7}}{{\text{ Bi }}_{0.3}}{{\text{ Co }}_{4}}{{\text{ O }}_{9}}\)/\({{\text{ La }}_{0.9}}{{\text{ Bi }}_{0.1}}{{\text{ NiO }}_{3}}\) thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036–1038 (2004)CrossRefGoogle Scholar
  18. 18.
    I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in \({{\text{ NaCo }}_{2}}{{\text{ O }}_{4}}\) single crystal. Phys. Rev. B 56, 12685–12687 (1997)CrossRefGoogle Scholar
  19. 19.
    M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, H. Nagai, Synthesis of \({{\text{ NaxCo }}_{2}}{{\text{ O }}_{4}}\) thermoelectric oxides by the polymerized complex method. Scr. Mater. 48, 403–408 (2003)CrossRefGoogle Scholar
  20. 20.
    A. Maignan, S. Hebert, L. Pi, D. Pelloquin, C. Martin, C. Michel, M. Hervieu, B. Raveau, Perovskite manganites and layered cobaltites: potential materials for thermoelectric applications. Crystal Eng. 5, 365–382 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Maignan, L.B. Wang, S. Hebert, D. Pelloquin, B. Raveau, Large thermopower in metallic misfit cobaltites. Chem. Mater. 14, 1231–1235 (2001)Google Scholar
  22. 22.
    B. Raveau, C. Martin, A. Maignan, What about the role of B elements in the CMR properties of \({{\text{ ABO }}_{3}}\) perovskites? J. Alloys Comp. 275–277, 461–467 (1998)CrossRefGoogle Scholar
  23. 23.
    M.A. Subramanian, A.P. Ramirez, G.H. Kwei, Colossal magnetoresistance behavior in manganese oxides: pyrochlore versus perovskite. Solid State Ionics 108, 185–191 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Zhou, J. Zhao, S. Chu, L. Shi, Synthesis, characterization and magnetic properties of lightly doped \({{\text{ La }}_{2-{\text{ x }}}}{{\text{ Sr }}_{\text{ x }}}{{\text{ CuO }}_{4}}\) (x = 0.04) nanoparticles. Phys. C 451, 38–43 (2007)CrossRefGoogle Scholar
  25. 25.
    L. Bocher, R. Robert, M.H. Aguirre, S. Malo, S. Hébert, A. Maignan, A. Weidenkaff, Thermoelectric and magnetic properties of perovskite-type manganate phases synthesised by ultrasonic spray combustion (USC). Solid State Sci. 10, 496–501 (2008)CrossRefGoogle Scholar
  26. 26.
    M.P. Pechini, in U.S. Patent No 3 330 697 (1967)Google Scholar
  27. 27.
    M. Gülgün, M.H. Nguyen, W.M. Kriven, Polymerized organic-inorganic synthesis of mixed oxides. J. Am. Cer. Soc. 82, 556–560 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Weidenkaff, Preparation and application of nanostructured perovskite phases. Adv. Eng. Mater. 6, 709–714 (2004)CrossRefGoogle Scholar
  29. 29.
    D.D.L. Chung, Composite material: science and applications, in Engineering Materials and Processes, 2nd edn. (Springer, London/England, 2010)Google Scholar
  30. 30.
    P. Tomeš, C. Suter, M. Trottmann, A. Steinfeld, A. Weidenkaff, Thermoelectric oxide modules tested in a solar cavity-receiver. J. Mater. Res. 26, 1975–1982 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Hirsch, P.V. Zedtwitz, T. Osinga, A new 75 kW high-flux solar simulator for high-temperature thermal and thermochemical research. J. Solar. Energy Eng. 125, 117–120 (2003)CrossRefGoogle Scholar
  32. 32.
    C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, Heat transfer analysis and geometrical optimization of thermoelectric converters driven by concentrated solar radiation. Materials 3, 2735–2752 (2010)CrossRefGoogle Scholar
  33. 33.
    T.P. Hogan, T. Shih, Modeling and characterization of power generation modules based on bulk materials, in Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton/USA, 2006)Google Scholar
  34. 34.
    A. Steinfeld, M. Schubnell, Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy 50, 19–25 (1993)CrossRefGoogle Scholar
  35. 35.
    W.T. Welford, R. Winston, High Collection Non-imaging Optics (Academic Press, San Diego/USA, 1989)Google Scholar
  36. 36.
    M. Bauccio, ASM Metals Reference Book, 3rd edn. (ASM International: Materials Park/USA, 1997), p. 139Google Scholar
  37. 37.
    C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, A solar cavity-receiver packed with an array of thermoelectric converter modules. Solar Energy 85, 1511–1518 (2011)CrossRefGoogle Scholar
  38. 38.
    Y.S. Touloukian, Thermal Radiative Properties (New York/USA, IFI/Plenum, 1972)Google Scholar
  39. 39.
    G.J. Snyder, Thermoelectric power generation: efficiency and compatibility, in Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton/US, 2006)Google Scholar
  40. 40.
    G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004)CrossRefGoogle Scholar
  41. 41.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anke Weidenkaff
    • 1
  • Matthias Trottmann
    • 1
  • Petr Tomeš
    • 2
  • Clemens Suter
    • 3
  • Aldo Steinfeld
    • 4
  • Angelika Veziridis
    • 1
  1. 1.Empa. Swiss Federal Laboratories for Materials Science and Technology Solid State Chemistry and CatalysisDuebendorfSwitzerland
  2. 2.Vienna University of Technology Institute of Solid State PhysicsWienAustria
  3. 3.AFC Air Flow Consulting AGZuerichSwitzerland
  4. 4.ETH. Swiss Federal Institute of Technology Zurich Institute of Energy TechnologyZuerichSwitzerland

Personalised recommendations