Robust Image Deblurring Using Hyper Laplacian Model

  • Yuquan Xu
  • Xiyuan Hu
  • Silong Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7729)


In recent years, many image deblurring algorithms have been proposed, most of which assume the noise in the deblurring process satisfies the Gaussian distribution. However, it is often unavoidable in practice both in non-blind and blind image deblurring, due to the error on the input kernel and the outliers in the blurry image. Without proper handing these outliers, the recovered image estimated by previous methods will suffer severe artifacts. In this paper, we mainly deal with two kinds of non-Gaussian noise in the image deblurring process, inaccurate kernel and compressed blurry image, and find that handling the noise as Laplacian distribution can get more robust result in these cases. Based on this point, the new non-blind and blind image deblurring algorithms are proposed to restore the clear image. To get more robust deblurred result, we also use 8 direction gradients of the image to estimate the blur kernel. The new minimization problem can be efficiently solved by the Iteratively Reweighted Least Squares(IRLS) and the experimental results on both synthesized and real-world images show the efficiency and robustness of our algorithm.


Latent Image Blind Deconvolution Robust Image Image Deblurring Iteratively Reweighted Little Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiener, N.: Extrapolation, interpolation and smoothing of stationary time series, New York (1949)Google Scholar
  2. 2.
    Richardson, W.: Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62, 55–59 (1972)CrossRefGoogle Scholar
  3. 3.
    Lucy, L.: An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745 (1974)CrossRefGoogle Scholar
  4. 4.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  5. 5.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S., Freeman, W.: Removing camera shake from a single photograph. ACM Trans. Graph. 25, 787–794 (2006)CrossRefGoogle Scholar
  6. 6.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 73, 73:1–73:10 (2008)Google Scholar
  7. 7.
    Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, vol. 19, p. 841 (2007)Google Scholar
  8. 8.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: NIPS, vol. 22 (2009)Google Scholar
  9. 9.
    Bar, L., Kiryati, N., Sochen, N.: Image deblurring in the presence of impulsive noise. International Journal of Computer Vision 70, 279–298 (2006)CrossRefGoogle Scholar
  10. 10.
    Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. In: Computer Vision Workshops (ICCV Workshops), pp. 745–752. IEEE (2011)Google Scholar
  11. 11.
    Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.: Multiframe blind deconvolution, super-resolution, and saturation correction via incremental em. In: Proc. ICIP, pp. 3313–3316 (2010)Google Scholar
  12. 12.
    Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: ICCV, pp. 495–502. IEEE (2011)Google Scholar
  13. 13.
    Yuan, L., Sun, J., Quan, L., Shum, H.: Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans. Graph. 27 (2008)Google Scholar
  14. 14.
    Ben-Ezra, M., Nayar, S.: Motion-based motion deblurring. IEEE Trans. on PAMI 26, 689–698 (2004)CrossRefGoogle Scholar
  15. 15.
    Tai, Y., Du, H., Brown, M., Lin, S.: Image/video deblurring using a hybrid camera. In: CVPR, pp. 1–8 (2008)Google Scholar
  16. 16.
    Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28, 145:1–145:8 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)Google Scholar
  18. 18.
    Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)Google Scholar
  20. 20.
    Cho, T., Paris, S., Horn, B., Freeman, W.: Blur kernel estimation using the radon transform. In: CVPR (2011)Google Scholar
  21. 21.
    Kim, S., Tai, Y., Kim, S., Brown, M., Matsushita, Y.: Nonlinear camera response functions and image deblurring. In: CVPR (2012)Google Scholar
  22. 22.
    Tai, Y., Lin, S.: Motion-aware noise filtering for deblurring of noisy and blurry images. In: CVPR (2012)Google Scholar
  23. 23.
    Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis 27, 919–940 (1990)zbMATHCrossRefGoogle Scholar
  24. 24.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuquan Xu
    • 1
  • Xiyuan Hu
    • 1
  • Silong Peng
    • 1
  1. 1.Institute of AutomationChinese Academy of SciencesBeijingP.R. China

Personalised recommendations