Effective Top-Down Active Learning for Hierarchical Text Classification

  • Xiao Li
  • Charles X. Ling
  • Huaimin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7819)

Abstract

Hierarchical text classification is an important task in many real-world applications. To build an accurate hierarchical classification system with many categories, usually a very large number of documents must be labeled and provided. This can be very costly. Active learning has been shown to effectively reduce the labeling effort in traditional (flat) text classification, but few works have been done in hierarchical text classification due to several challenges. A major challenge is to reduce the so-called out-of-domain queries. Previous state-of-the-art approaches tackle this challenge by simultaneously forming the unlabeled pools on all the categories regardless of the inherited hierarchical dependence of classifiers. In this paper, we propose a novel top-down hierarchical active learning framework, and effective strategies to tackle this and other challenges. With extensive experiments on eight real-world hierarchical text datasets, we demonstrate that our strategies are highly effective, and they outperform the state-of-the-art hierarchical active learning methods by reducing 20% to 40% queries.

Keywords

Active Learning Hierarchical Text Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinker, K.: On active learning in multi-label classification. In: From Data and Information Analysis to Knowledge Engineering, pp. 206–213 (2006)Google Scholar
  2. 2.
    Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study. J. Intell. Inf. Syst. 28, 37–78 (2007)CrossRefGoogle Scholar
  3. 3.
    Dumais, S., Chen, H.: Hierarchical classification of web content. In: SIGIR 2000, pp. 256–263. ACM (2000)Google Scholar
  4. 4.
    Esuli, A., Sebastiani, F.: Active learning strategies for multi-label text classification. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 102–113. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Fall, C.J., Törcsvári, A., Benzineb, K., Karetka, G.: Automated categorization in the international patent classification. SIGIR Forum 37(1), 10–25 (2003)CrossRefGoogle Scholar
  6. 6.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)MATHGoogle Scholar
  7. 7.
    Lam, W., Ho, C.Y.: Using a generalized instance set for automatic text categorization. In: SIGIR 1998, pp. 81–89 (1998)Google Scholar
  8. 8.
    Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)Google Scholar
  9. 9.
    Li, X., Kuang, D., Ling, C.X.: Active learning for hierarchical text classification. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 14–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y.: Support vector machines classification with a very large-scale taxonomy. SIGKDD Explor. Newsl. 7, 36–43 (2005)CrossRefGoogle Scholar
  11. 11.
    Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: ICML 2001, pp. 441–448 (2001)Google Scholar
  12. 12.
    Ruiz, M.E., Srinivasan, P.: Hierarchical neural networks for text categorization (poster abstract). In: SIGIR 1999, pp. 281–282 (1999)Google Scholar
  13. 13.
    Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 22, 31–72 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Sun, A., Lim, E.P.: Hierarchical text classification and evaluation. In: ICDM 2001, pp. 521–528 (2001)Google Scholar
  15. 15.
    Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2002)MATHGoogle Scholar
  16. 16.
    Verspoor, K., Cohn, J., Mniszewski, S., Joslyn, C.: Categorization approach to automated ontological function annotation. In: Protein Science, pp. 1544–1549 (2006)Google Scholar
  17. 17.
    Xu, Z., Yu, G., Tresp, V., Xu, X., Wang, J.: Representative sampling for text classification using support vector machines. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 393–407. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hierarchies. In: SIGIR 2008, pp. 619–626 (2008)Google Scholar
  19. 19.
    Yang, B., Sun, J.T., Wang, T., Chen, Z.: Effective multi-label active learning for text classification. In: KDD 2009, pp. 917–926 (2009)Google Scholar
  20. 20.
    Zhu, J., Wang, H., Hovy, E., Ma, M.: Confidence-based stopping criteria for active learning for data annotation. ACM Trans. Speech Lang. Process 6(3), 3:1–3:24 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiao Li
    • 1
    • 2
  • Charles X. Ling
    • 1
  • Huaimin Wang
    • 2
  1. 1.Department of Computer ScienceThe University of Western OntarioCanada
  2. 2.National Laboratory for Parallel & Distributed ProcessingNational University of Defense TechnologyCanada

Personalised recommendations