Frequent Pattern Mining in Attributed Trees

  • Claude Pasquier
  • Jérémy Sanhes
  • Frédéric Flouvat
  • Nazha Selmaoui-Folcher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7818)


Frequent pattern mining is an important data mining task with a broad range of applications. Initially focused on the discovery of frequent itemsets, studies were extended to mine structural forms like sequences, trees or graphs. In this paper, we introduce a new data mining method that consists in mining new kind of patterns in a collection of attributed trees (atrees). Attributed trees are trees in which vertices are associated with itemsets. Mining this type of patterns (called asubtrees), which combines tree mining and itemset mining, requires the exploration of a huge search space. We present several new algorithms for attributed trees mining and show that their implementations can efficiently list frequent patterns in a database of several thousand of attributed trees.


tree mining frequent pattern mining attributed tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)Google Scholar
  3. 3.
    Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: SDM (2002)Google Scholar
  4. 4.
    Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: KDD, pp. 429–435 (2002)Google Scholar
  5. 5.
    Balcázar, J.L., Bifet, A., Lozano, A.: Mining frequent closed rooted trees. Mach. Learn. 78(1-2), 1–33 (2010)CrossRefGoogle Scholar
  6. 6.
    Chehreghani, M.H.: Efficiently mining unordered trees. In: ICDM, pp. 111–120 (2011)Google Scholar
  7. 7.
    Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundam. Inf. 66(1-2), 161–198 (2004)MathSciNetGoogle Scholar
  8. 8.
    Chi, Y., Yang, Y., Muntz, R.R.: Hybridtreeminer: An efficient algorithm for mining frequent rooted trees and free trees using canonical form. In: SSDBM, pp. 11–20 (2004)Google Scholar
  9. 9.
    Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: Cmtreeminer: Mining both closed and maximal frequent subtrees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 63–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fukuzaki, M., Seki, M., Kashima, H., Sese, J.: Finding itemset-sharing patterns in a large itemset-associated graph. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS (LNAI), vol. 6119, pp. 147–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000)CrossRefGoogle Scholar
  12. 12.
    Hido, S., Kawano, H.: Amiot: Induced ordered tree mining in tree-structured databases. In: ICDM, pp. 170–177 (2005)Google Scholar
  13. 13.
    Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations. In: KDD, pp. 189–194 (2005)Google Scholar
  14. 14.
    Miyoshi, Y., Ozaki, T., Ohkawa, T.: Frequent pattern discovery from a single graph with quantitative itemsets. In: ICDM Workshops, pp. 527–532 (2009)Google Scholar
  15. 15.
    Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. In: SDM, pp. 593–604 (2009)Google Scholar
  16. 16.
    Mougel, P.-N., Rigotti, C., Gandrillon, O.: Finding collections of k-clique percolated components in attributed graphs. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS (LNAI), vol. 7302, pp. 181–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Nijssen, S., Kok, J.N.: Efficient discovery of frequent unordered trees. In: First International Workshop on Mining Graphs, Trees and Sequences (MGTS) (2003)Google Scholar
  18. 18.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Termier, A., Rousset, M.C., Sebag, M.: Dryade: A new approach for discovering closed frequent trees in heterogeneous tree databases. In: ICDM, pp. 543–546 (2004)Google Scholar
  20. 20.
    Termier, A., Rousset, M.C., Sebag, M., Ohara, K., Washio, T., Motoda, H.: Dryadeparent, an efficient and robust closed attribute tree mining algorithm. IEEE Trans. on Knowl. and Data Eng. 20(3), 300–320 (2008)CrossRefGoogle Scholar
  21. 21.
    Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.: Efficient pattern-growth methods for frequent tree pattern mining. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 441–451. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explor. Newsl. 5(1), 59–68 (2003)Google Scholar
  23. 23.
    Xiao, Y., Yao, J.F., Li, Z., Dunham, M.H.: Efficient data mining for maximal frequent subtrees. In: ICDM, pp. 379–386 (2003)Google Scholar
  24. 24.
    Zaki, M.J.: Efficiently mining frequent trees in a forest. In: KDD, pp. 71–80 (2002)Google Scholar
  25. 25.
    Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundam. Inf. 66(1-2), 33–52 (2004)MathSciNetGoogle Scholar
  26. 26.
    Zou, L., Lu, Y., Zhang, H., Hu, R.: Prefixtreeespan: a pattern growth algorithm for mining embedded subtrees. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 499–505. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claude Pasquier
    • 1
    • 2
  • Jérémy Sanhes
    • 1
  • Frédéric Flouvat
    • 1
  • Nazha Selmaoui-Folcher
    • 1
  1. 1.PPMEUniversity of New CaledoniaNouméaFrance
  2. 2.Institute of Biology Valrose (IBV), UNS - CNRS UMR7277 - INSERM U1091Nice cedex 2France

Personalised recommendations