Advertisement

Robust Synchronization-Based Graph Clustering

  • Junming Shao
  • Xiao He
  • Qinli Yang
  • Claudia Plant
  • Christian Böhm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7818)

Abstract

Complex graph data now arises in various fields like social networks, protein-protein interaction networks, ecosystems, etc. To reveal the underlying patterns in graphs, an important task is to partition them into several meaningful clusters. The question is: how can we find the natural partitions of a complex graph which truly reflect the intrinsic patterns? In this paper, we propose RSGC, a novel approach to graph clustering. The key philosophy of RSGC is to consider graph clustering as a dynamic process towards synchronization. For each vertex, it is viewed as an oscillator and interacts with other vertices according to the graph connection information. During the process towards synchronization, vertices with similar connectivity patterns tend to naturally synchronize together to form a cluster. Inherited from the powerful concept of synchronization, RSGC shows several desirable properties: (a) it provides a novel perspective for graph clustering based on proposed interaction model; (b) RSGC allows discovering natural clusters in graph without any data distribution assumption; (c) RSGC is also robust against noise vertices. We systematically evaluate RSGC algorithm on synthetic and real data to demonstrate its superiority.

Keywords

Graph Clustering Synchronization Kuramoto Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 1–4 (2006)CrossRefGoogle Scholar
  2. 2.
    Böhm, C., Plant, C., Shao, J., Yang, Q.: Clustering by synchronization. In: KDD, pp. 583–592 (2010)Google Scholar
  3. 3.
    Brohee, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., van Helden, J.: Network analysis tools: from biological networks to clusters and pathways. Nat. Protoc. 3, 1616–1629 (2008)CrossRefGoogle Scholar
  4. 4.
    Bae, C.S., Kim, C.S., Tcha, H.J.: Synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data. BMC Bioinformatics 9(56) (2008)Google Scholar
  5. 5.
    Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully automatic cross-associations. In: KDD, New York, pp. 79–88 (2004)Google Scholar
  6. 6.
    Dongen, S.: A cluster algorithm for graphs. Technical report, CWI (Centre for Mathematics and Computer Science), The Netherlands (2000)Google Scholar
  7. 7.
    Evans, T.: Clique graphs and overlapping communities. Journal of Statistical Mechanics, P12037 (2010)Google Scholar
  8. 8.
    Faloutsos, C., Lin, K.: Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: SIGMOD (1995)Google Scholar
  9. 9.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jaccard, P.: Distribution de la flore alpine dans la Bassin de Dranses et dans quelques regions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 241–272 (1901)Google Scholar
  11. 11.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mueller, N., Haegler, K., Shao, J., Plant, C., Böhm, C.: Weighted graph compression for parameter-free clustering with pacco. In: SDM (2011)Google Scholar
  14. 14.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS 14, pp. 849–856 (2001)Google Scholar
  15. 15.
    Shao, J., Plant, C., Yang, Q., Boehm, C.: Detection of Arbitrarily Oriented Synchronized Clusters in High-Dimensional Data. In: ICDM 2011, pp. 607–616 (2011)Google Scholar
  16. 16.
    Shao, J., Böhm, C., Yang, Q., Plant, C.: Synchronization based outlier detection. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS (LNAI), vol. 6323, pp. 245–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: ICML 2009, New York, NY, USA, pp. 1073–1080 (2009)Google Scholar
  18. 18.
    Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS, vol. 17, pp. 1601–1608 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Junming Shao
    • 1
  • Xiao He
    • 2
  • Qinli Yang
    • 2
  • Claudia Plant
    • 3
  • Christian Böhm
    • 2
  1. 1.University of MainzMainzGermany
  2. 2.University of MunichMunichGermany
  3. 3.Florida State UniversityTallahasseeUSA

Personalised recommendations