Hand-Eye Calibration without Hand Orientation Measurement Using Minimal Solution

  • Zuzana Kukelova
  • Jan Heller
  • Tomas Pajdla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7727)

Abstract

In this paper we solve the problem of estimating the relative pose between a robot’s gripper and a camera mounted rigidly on the gripper in situations where the rotation of the gripper w.r.t. the robot global coordinate system is not known. It is a variation of the so called hand-eye calibration problem. We formulate it as a problem of seven equations in seven unknowns and solve it using the Gröbner basis method for solving systems of polynomial equations. This enables us to calibrate from the minimal number of two relative movements and to provide the first exact algebraic solution to the problem. Further, we describe a method for selecting the geometrically correct solution among the algebraically correct ones computed by the solver. In contrast to the previous iterative methods, our solution works without any initial estimate and has no problems with error accumulation. Finally, by evaluating our algorithm on both synthetic and real scene data we demonstrate that it is fast, noise resistant, and numerically stable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with unknown focal length. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  2. 2.
    Chou, J.C.K., Kamel, M.: Finding the position and orientation of a sensor on a robot manipulator using quaternions. International Journal of Robotics Research 10(3), 240–254 (1991)CrossRefGoogle Scholar
  3. 3.
    Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer (2005)Google Scholar
  4. 4.
    Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, And Algorithms: An Introduction to Computational Algebraic Geometry And Commutative Algebra, Number v. 10. Undergraduate Texts in Mathematics. Springer (2007)Google Scholar
  5. 5.
    Daniilidis, K.: Hand-eye calibration using dual quaternions. International Journal of Robotics Research 18, 286–298 (1998)Google Scholar
  6. 6.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heller, J., Havlena, M., Pajdla, T.: A branch-and-bound algorithm for globally optimal hand-eye calibration. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  8. 8.
    Heller, J., Havlena, M., Sugimoto, A., Pajdla, T.: Structure-from-motion based hand-eye calibration using l  ∞  minimization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3497–3503 (2011)Google Scholar
  9. 9.
    Horaud, R., Dornaika, F.: Hand-eye calibration. The International Journal of Robotics Research 14(3), 195–210 (1995)CrossRefGoogle Scholar
  10. 10.
    Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  11. 11.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic Generator of Minimal Problem Solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Micusik, B., Pajdla, T.: Structure from motion with wide circular field of view cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence (2006)Google Scholar
  13. 13.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 756–770 (2004)CrossRefGoogle Scholar
  14. 14.
    Nistér, D., Stewénius, H.: A minimal solution to the generalised 3-point pose problem. Journal of Mathematical Imaging and Vision 27(1), 67–79 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Park, F.C., Martin, B.J.: Robot sensor calibration: solving AX=XB on the euclidean group. IEEE Transactions on Robotics and Automation 10(5), 717–721 (1994)CrossRefGoogle Scholar
  16. 16.
    Ruland, T., Pajdla, T., Kruger, L.: Globally optimal hand-eye calibration. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  17. 17.
    Shiu, Y.C., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB. IEEE Transactions on Robotics and Automation 5(1), 16–29 (1989)CrossRefGoogle Scholar
  18. 18.
    Hans, J.: Stetter. Numerical polynomial algebra. SIAM (2004)Google Scholar
  19. 19.
    Stewenius, H., Aström, K.: Hand-eye calibration using multilinear constraints. In: Proceedings of the Asian Conference on Computer Vision (2004)Google Scholar
  20. 20.
    Stewenius, H., Schaffalitzky, F., Nister, D.: How hard is 3-view triangulation really? In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 686–693 (2005)Google Scholar
  21. 21.
    Strobl, K.H., Hirzinger, G.: Optimal Hand-Eye Calibration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4647–4653 (2006)Google Scholar
  22. 22.
    Torii, A., Havlena, M., Pajdla, T.: Omnidirectional image stabilization for visual object recognition. International Journal of Computer Vision 91(2), 157–174 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Tsai, R.Y., Lenz, R.K.: Real time versatile robotics hand/eye calibration using 3D machine vision. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 554–561 (1988)Google Scholar
  24. 24.
    Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5(3), 345–358 (1989)CrossRefGoogle Scholar
  25. 25.
    Zhuang, H., Shiu, Y.C.: A noise tolerant algorithm for wrist-mounted robotic sensor calibration with or without sensor orientation measurement. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1095–1100 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zuzana Kukelova
    • 1
  • Jan Heller
    • 1
  • Tomas Pajdla
    • 2
  1. 1.Center for Machine Perception, Department of Cybernetics, Faculty of Elec. Eng.Czech Technical University in PraguePrague 6Czech Republic
  2. 2.Neovision, s.r.o.Prague 4Czech Republic

Personalised recommendations