Bayesian Epipolar Geometry Estimation from Tomographic Projections

  • Sami S. Brandt
  • Katrine Hommelhoff Jensen
  • François Lauze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7727)


In this paper, we first show that the affine epipolar geometry can be estimated by identifying the common 1D projection from a pair of tomographic parallel projection images and the 1D affine transform between the common 1D projections. To our knowledge, the link between the common 1D projections and the affine epipolar geometry has been unknown previously; and in contrast to the traditional methods of estimating the epipolar geometry, no point correspondences are required. Using these properties, we then propose a Bayesian method for estimating the affine epipolar geometry, where we apply a Gaussian model for the noise and non-informative priors for the nuisance parameters. We derive an analytic form for the marginal posterior distribution, where the nuisance parameters are integrated out. The marginal posterior is sampled by a hybrid Gibbs–Metropolis–Hastings sampler and the conditional mean and the covariance over the posterior are evaluated on the homogeneous manifold of affine fundamental matrices. We obtained promising results with synthetic 3D Shepp–Logan phantom as well as with real cryo-electron microscope projections.


Nuisance Parameter Fundamental Matrix Fundamental Matrice Epipolar Line Homogeneous Manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crowther, R., Amos, L., Finch, J., De Rosier, D., Klug, A.: Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226, 421–425 (1970)CrossRefGoogle Scholar
  2. 2.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press (1988)Google Scholar
  3. 3.
    Brandt, S.S.: Markerless alignment in electron tomography. In: Frank, J. (ed.) Electron Tomography. Springer (2006)Google Scholar
  4. 4.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge (2000)Google Scholar
  5. 5.
    Brandt, S., Heikkonen, J.: Optimal method for the affine F-matrix and its uncertainty estimation in the sense of both noise and outliers. In: Proc. ICCV, vol. 2, pp. 166–173 (2001)Google Scholar
  6. 6.
    Brandt, S.S., Kolehmainen, V.: Structure-from-motion without correspondence from tomographic projections by bayesian inversion theory. IEEE Trans. Med. Imaging 26, 238–248 (2007)CrossRefGoogle Scholar
  7. 7.
    Frank, J.: Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Oxford (2006)Google Scholar
  8. 8.
    Brandt, S.S., Ziese, U.: Automatic TEM image alignment by trifocal geometry. Journal of Microscopy 222, 1–14 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bretthorst, G.L.: Bayesian Spectrum Analysis and Parameter Estimation. Springer (1988)Google Scholar
  10. 10.
    Brandt, S.S., Palander, K.: A Bayesian Approach for Affine Auto-calibration. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 577–587. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge (2003)Google Scholar
  12. 12.
    Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. JMIV 25, 127–154 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sami S. Brandt
    • 1
  • Katrine Hommelhoff Jensen
    • 1
  • François Lauze
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations