Incremental Slow Feature Analysis with Indefinite Kernel for Online Temporal Video Segmentation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7725)


Slow Feature Analysis (SFA) is a subspace learning method inspired by the human visual system, however, it is seldom seen in computer vision. Motivated by its application for unsupervised activity analysis, we develop SFA’s first implementation of online temporal video segmentation to detect episodes of motion changes. We utilize a domain-specific indefinite kernel which takes the data representation into account to introduce robustness. As our kernel is indefinite (i.e. defines instead of a Hilbert, a Krein space), we formulate SFA in Krein space. We propose an incremental kernel SFA framework which utilizes the special properties of our kernel. Finally, we employ our framework to online temporal video segmentation and perform qualitative and quantitative evaluation.


Singular Value Decomposition Scatter Matrix Kernel Principal Component Analysis Eigenvalue Decomposition Krein Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiskott, L., Sejnowski, T.: Slow Feature Analysis: Unsupervised Learning of Invariances. Neural Computation 14, 715–770 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Nater, A., Grabner, H., Van Gool, L.: Temporal Relations in Videos for Unsupervised Activity Analysis. In: Mach. Learning, pp. 78–86 (2004)Google Scholar
  3. 3.
    Kompella, V., Luciw, M., Schmidhuber, J.: Incremental Slow Feature Analysis. In: IJCAI 2011, pp. 1354–1359 (2011)Google Scholar
  4. 4.
    Zhang, Z., Tao, D.: Slow Feature Analysis for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34, 436–450 (2012)CrossRefGoogle Scholar
  5. 5.
    Böhmer, W., Grünewälder, S., Nickisch, H., Obermayer, K.: Regularized sparse kernel slow feature analysis. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS (LNAI), vol. 6911, pp. 235–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells. PLoS Comput. Biol. 3, 1605–1622 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve Basis Extraction and its Application to Images. IEEE Trans. Image Process. 9, 1371–1374 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ross, D., Lim, J., Lin, R., Yang, M.: Incremental Learning for Robust Visual Tracking. Int. Journal of Comp. Vision 77, 125–141 (2008)CrossRefGoogle Scholar
  9. 9.
    Weng, J., Zhang, Y., Hwang, W.: Candid Covariance-Free Incremental Principal Component Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1034–1040 (2003)CrossRefGoogle Scholar
  10. 10.
    Chin, T., Suter, D.: Incremental Kernel Principal Component Analysis. IEEE Trans. Image Process. 16, 1662–1674 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhou, F., De la Torre, F., Cohn, J.: Unsupervised Discovery of Facial Events. In: CVPR 2010, pp. 2574–2581 (2010)Google Scholar
  12. 12.
    Turaga, P., Veeraraghavan, A., Chellappa, R.: Unsupervised View and Rate Invariant Clustering of Videosequences. Comp. Vision and Image Understanding 113, 353–371 (2009)CrossRefGoogle Scholar
  13. 13.
    Hoai, M., Lan, Z., De la Torre, F.: Joint Segmentation and Classification of Human Actions in Video. In: CVPR 2011, pp. 3265–3272 (2011)Google Scholar
  14. 14.
    Liwicki, S., Zafeiriou, S., Tzimiropoulos, G., Pantic, M.: Efficient Online Subspace Learning with an Indefinite Kernel for Visual Tracking and Recognition. IEEE Trans. Neu. Net. Learn. Systems 23, 1624–1636 (2012)CrossRefGoogle Scholar
  15. 15.
    Tzimiropoulos, G., Argyriou, V., Zafeiriou, S., Stathaki, T.: Robust FFT-Based Scale-Invariant Image Registration with Image Gradients. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1899–1906 (2010)CrossRefGoogle Scholar
  16. 16.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  17. 17.
    Pękalska, E., Haasdonk, B.: Kernel Discriminant Analysis for Positive Definite and Indefinite Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1017–1032 (2009)CrossRefGoogle Scholar
  18. 18.
    Hassibi, B., Sayed, A., Kailath, T.: Linear Estimation in Krein Spaces. I. Theory. IEEE Trans. Automatic Control 41, 18–33 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Valstar, M., Pantic, M.: Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial Expression Database. In: LREC 2010, pp. 65–70 (2010)Google Scholar
  20. 20.
    Fathi, A., Mori, G.: Action Recognition by Learning Mid-level Motion Features. In: CVPR 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ComputingImperial College LondonUnited Kingdom
  2. 2.Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations