Generic Active Appearance Models Revisited

  • Georgios Tzimiropoulos
  • Joan Alabort-i-Medina
  • Stefanos Zafeiriou
  • Maja Pantic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7726)


The proposed Active Orientation Models (AOMs) are generative models of facial shape and appearance. Their main differences with the well-known paradigm of Active Appearance Models (AAMs) are (i) they use a different statistical model of appearance, (ii) they are accompanied by a robust algorithm for model fitting and parameter estimation and (iii) and, most importantly, they generalize well to unseen faces and variations. Their main similarity is computational complexity. The project-out version of AOMs is as computationally efficient as the standard project-out inverse compositional algorithm which is admittedly the fastest algorithm for fitting AAMs. We show that not only does the AOM generalize well to unseen identities, but also it outperforms state-of-the-art algorithms for the same task by a large margin. Finally, we prove our claims by providing Matlab code for reproducing our experiments ( ).


Appearance Model Deformable Model Active Appearance Model Appearance Variation Face Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. CVIU 61, 38–59 (1995)Google Scholar
  2. 2.
    Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Pattern Recognition 41, 3054–3067 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Saragih, J., Lucey, S., Cohn, J.: Face alignment through subspace constrained mean-shifts. In: ICCV (2009)Google Scholar
  4. 4.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. TPAMI 23, 681–685 (2001)CrossRefGoogle Scholar
  5. 5.
    Matthews, I., Baker, S.: Active appearance models revisited. IJCV 60, 135–164 (2004)CrossRefGoogle Scholar
  6. 6.
    Liu, X.: Generic face alignment using boosted appearance model. In: CVPR (2007)Google Scholar
  7. 7.
    Wu, H., Liu, X., Doretto, G.: Face alignment via boosted ranking model. In: CVPR (2008)Google Scholar
  8. 8.
    Saragih, J., Gocke, R.: Learning aam fitting through simulation. Pattern Recognition 42, 2628–2636 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Saragih, J., Goecke, R.: A nonlinear discriminative approach to aam fitting. In: ICCV (2007)Google Scholar
  10. 10.
    Lucey, S., Wang, Y., Cox, M., Sridharan, S., Cohn, J.F.: Efficient constrained local model fitting for non-rigid face alignment. Image and Vision Computing 27, 1804–1813 (2009)CrossRefGoogle Scholar
  11. 11.
    Saragih, J., Lucey, S., Cohn, J.: Deformable model fitting by regularized landmark mean-shift. IJCV 91, 200–215 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Belhumeur, P., Jacobs, D., Kriegman, D., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: CVPR (2011)Google Scholar
  13. 13.
    Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: CVPR (2010)Google Scholar
  14. 14.
    Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2887–2894 (2012)Google Scholar
  15. 15.
    Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image and Vision Computing 23, 1080–1093 (2005)CrossRefGoogle Scholar
  16. 16.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Robust and efficient parametric face alignment. In: ICCV (2011)Google Scholar
  17. 17.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE TPAMI (to appear)Google Scholar
  18. 18.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark estimation in the wild. In: CVPR (2012)Google Scholar
  19. 19.
    Cootes, T., Taylor, C.: On representing edge structure for model matching. In: CVPR (2001)Google Scholar
  20. 20.
    De La Torre, F., Black, M.: A framework for robust subspace learning. IJCV 54, 117–142 (2003)zbMATHCrossRefGoogle Scholar
  21. 21.
    Baker, S., Gross, R., Matthews, I.: Lucas-kanade 20 years on: Part 3. Robotics Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-03-35 (2003)Google Scholar
  22. 22.
    Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE TPAMI 30, 1858–1865 (2008)CrossRefGoogle Scholar
  23. 23.
    Navarathna, R., Sridharan, S., Lucey, S.: Fourier active appearance models. In: ICCV (2011)Google Scholar
  24. 24.
    Basso, C., Vetter, T., Blanz, V.: Regularized 3d morphable models. In: First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis (2003)Google Scholar
  25. 25.
    Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2d+3d active appearance models. In: CVPR (2004)Google Scholar
  26. 26.
    Ramnath, K., Baker, S., Matthews, I., Ramanan, D.: Increasing the density of active appearance models. In: CVPR (2008)Google Scholar
  27. 27.
    Patel, A., Smith, W.A.P.: 3d morphable face models revisited. In: CVPR (2009)Google Scholar
  28. 28.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: Xm2vtsdb: The extended m2vts database. In: 2nd International Conference on Audio and Video-Based Biometric Person Authentication, vol. 964, pp. 965–966 (1999)Google Scholar
  29. 29.
    Gross, R., Matthews, I., Cohn, J., Kanade, T.: Multi-pie. Image and Vision Computing 28, 807–813 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Georgios Tzimiropoulos
    • 1
    • 2
  • Joan Alabort-i-Medina
    • 1
  • Stefanos Zafeiriou
    • 1
  • Maja Pantic
    • 1
    • 3
  1. 1.Department of ComputingImperial College LondonUnited Kingdom
  2. 2.School of Computer ScienceUniversity of LincolnUnited Kingdom
  3. 3.Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations