Architectural Design Thinking as a Form of Model-Based Reasoning

Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 8)

Abstract

Model-based reasoning can be considered central in very diverse domains of practice. Recently considered domains of practice are political discourse, social intercourse, language learning, archaeology, collaboration and conversation, and so forth. In this paper, we explore features of model-based reasoning in architectural design and construction. Additionally, an indication is given of some existing suggestions of how model-based reasoning systems may be simulated in an automated environment. We extend these lines of thought into our own simulated environment and give indications of how such a model-based reasoning system can not only give us better insights in the architectural design and construction practice, but also why it is so hard for such a system to eventually surpass human capabilities in this area of practice.

Keywords

Abductive reasoning Architectural design Construction Information  Reasoning 

References

  1. 1.
    Magnani, L.: Abductive reasoning: philosophical and educational perspectives in medicine. In: Evans, D., Patel, V. (eds.) Advanced Models of Cognition for Medical Training and Practice, pp. 21–41. Springer, Berlin (1992)CrossRefGoogle Scholar
  2. 2.
    Jovanovic, A., Krneta, G.: Abductive reasoning and second language learning. J. Lang. Teach. Res. 3(2), 306–313 (2012)Google Scholar
  3. 3.
    Wirth, U.: Abductive reasoning in Peirce’s and Davidson’s account of interpretation. T. C. S. Peirce Soc. 35(1), 115–127 (1999)Google Scholar
  4. 4.
    Arrighi, C., Ferrario, R.: Abductive reasoning, interpretation and collaborative processes. Found. Sci. 13, 75–87 (2008)CrossRefGoogle Scholar
  5. 5.
    Shelley, C.: Visual abductive reasoning in archaeology. Philos. Sci. 63(2), 278–301 (1996)CrossRefGoogle Scholar
  6. 6.
    Thagard, P.: The cognitive-affective structure of political ideologies. In: Martinovski, B. (ed.) Emotion in Group Decision and Negotiation. Springer, Berlin (forthcoming)Google Scholar
  7. 7.
    Shelley, C.: Motivation-biased design. In: Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 2956–2961 (2011)Google Scholar
  8. 8.
    Thagard, P.: Creative combination of representations: scientific discovery and technological invention. In: Proctor, R., Capaldi, E. (eds.) Psychology of Science: Implicit and Explicit Processes, pp. 389–405. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  9. 9.
    Goldschmidt, G.: Linkography: assessing design productivity. In: Trappl, R. (ed.) Cybernetics and Systems ’90. World Scientific, Singapore (1990)Google Scholar
  10. 10.
    Goldschmidt, G.: Criteria for design evaluation: a process-oriented paradigm. In: Kalay, Y. (ed.) Evaluating and Predicting Design Performance. Wiley, New York (1992)Google Scholar
  11. 11.
    Goldschmidt, G.: The designer as a team of one. Des. Issues 16(2), 189–209 (1995)Google Scholar
  12. 12.
    Bod, R.: The data-oriented parsing approach: theory and application. In: Fulcher, J., Jain, L. (eds.) Computational Intelligence: A Compendium, pp. 307–342. Springer, Oxford (2008)CrossRefGoogle Scholar
  13. 13.
    Bod, R.: From exemplar to grammar: a probabilistic analogy-based model of language learning. Cog. Sci. 33, 752–793 (2009)Google Scholar
  14. 14.
    Velazquez-Quesada, F.: Small steps in dynamics of information. Ph.D. thesis, University of Amsterdam, Amsterdam (2011)Google Scholar
  15. 15.
    Pauwels, P., Bod, R.: Including the power of interpretation through a simulation of Peirce’s process of inquiry. Lit. Ling. Comput. (in press). doi: 10.1093/llc/fqs056
  16. 16.
    Pauwels, P., De Meyer, R., Van Campenhout, J.: Design thinking support: information systems vs. reasoning. Des. Issues 29(2) (2013)Google Scholar
  17. 17.
    Archer, L.: Systematic methods for designers. In: Developments in Design, Methodology, pp. 57–82. Wiley, Chichester (1965)Google Scholar
  18. 18.
    Jones, J.: Design Methods: Seeds of Human Futures, 1st edn. Wiley, New York (1970)Google Scholar
  19. 19.
    Alexander, C.: The state of the art in design methods. Des. Methods Group Newslett. 5(3), 3–7 (1971)Google Scholar
  20. 20.
    Jones, J.: How my thoughts about design methods have changed during the years. Des. Methods Theor. 11(1), 48–62 (1977)Google Scholar
  21. 21.
    Rittel, H., Webber, M.: Planning problems are wicked problems. In: Cross, N. (ed.) Developments in Design Methodology, pp. 135–144. Wiley, Chichester (1984)Google Scholar
  22. 22.
    Simon, H.: The structure of ill-structured problems. Artif. Intell. 4, 181–201 (1973)CrossRefGoogle Scholar
  23. 23.
    Rittel, H., Webber, M.: Dilemmas in a general theory of planning. Policy Sci. 4, 155–169 (1973)CrossRefGoogle Scholar
  24. 24.
    Schön, D.: The Reflective Practitioner: How Professionals Think in Action. Temple Smith, London (1983)Google Scholar
  25. 25.
    Lawson, B.: How Designers Think: The Design Process Demystified, 4th edn. Elsevier, Oxford (2005)Google Scholar
  26. 26.
    Cross, N.: Designerly Ways of Knowing. Springer, London (2006)Google Scholar
  27. 27.
    Goldschmidt, G.: The dialectics of sketching. Des. Stud. 4, 123–143 (1991)Google Scholar
  28. 28.
    Goldschmidt, G.: On visual design thinking: the vis kids of architecture. Des. Stud. 15(2), 158–174 (1994)CrossRefGoogle Scholar
  29. 29.
    Cross, N.: Designerly ways of knowing. Des. Stud. 3(4), 221–227 (1982)CrossRefGoogle Scholar
  30. 30.
    Douglas, M., Isherwood, B.: The World of Goods. Allen Lane, London (1979)Google Scholar
  31. 31.
    Cross, N.: The nature and nurture of design ability. Des. Stud. 11(3), 127–140 (1990)CrossRefGoogle Scholar
  32. 32.
    Peirce, C.: Collected Papers of Charles Sanders Peirce. vols. 1–6 (Eds. C. Hartshorne & P. Weiss) (1931–1935), vols. 7–8 (Ed. A.W. Burks) (1958). Harvard University Press, Cambridge (1958)Google Scholar
  33. 33.
    March, L.: The logic of design and the question of value. In: The Architecture of Form, pp. 1–40. Cambridge University Press, Cambridge (1976)Google Scholar
  34. 34.
    Bogen, J.: The other side of the brain II: an appositional mind. Bull. Los Angeles Neurol. Soc. 34(3), 135–162 (1969)Google Scholar
  35. 35.
    Simon, H.: Models of Discovery and Other Topics in the Methods of Science. Reidel, Dordrecht (1977)CrossRefGoogle Scholar
  36. 36.
    Saunders, D., Thagard, P.: Creativity in computer science. In: Kaufman, J., Baer, J. (eds.) Creativity Across Domains: Faces of the Muse. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  37. 37.
    Thagard, P., Millgram, E.: Inference to the best plan: a coherence theory of decision. In: Ram, A., Leake, D. (eds.) Goal-Driven Learning, pp. 439–454. MIT Press, Cambridge (1997)Google Scholar
  38. 38.
    Thagard, P., Croft, D.: Scientific discovery and technological innovation: ulcers, dinosaur extinction, and the programming language java. In: Magnani, L., Nersessian, N., Thagard, P. (eds.) Model-Based Reasoning in Scientific Discovery, pp. 125–137. Kluwer Academic/Plenum Publishers, New York (1999)CrossRefGoogle Scholar
  39. 39.
    Ennis, C., Gyeszly, S.: Protocol analysis of the engineering systems design process. Res. Eng. Des. 3(1), 15–22 (1991)CrossRefGoogle Scholar
  40. 40.
    Cross, N.: Design cognition: results from protocol and other empirical studies of design activity. In: Eastman, C., McCracken, W., Newstetter, W. (eds.) Design Knowing and Learning: Cognition in Design Education, pp. 79–104. Elsevier, Oxford (2001)CrossRefGoogle Scholar
  41. 41.
    Kavakli, M., Gero, J.: The structure of concurrent cognitive actions: a case study of novice and expert designers. Des. Stud. 23(1), 25–40 (2002)CrossRefGoogle Scholar
  42. 42.
    Kolko, J.: Abductive thinking and sensemaking: the drivers of design synthesis. Des. Issues 26, 15–28 (2010)Google Scholar
  43. 43.
    Ericsson, K., Simon, H.: Protocol Analysis: Verbal Reports as Data. MIT Press, Cambridge (1993)Google Scholar
  44. 44.
    van Someren, M., Barnard, Y., Sandberg, J.: The Think Aloud Method: A Practical Guide to Modelling Cognitive Processes. Academic Press, San Diego (1994)Google Scholar
  45. 45.
    Kan, J., Gero, J.: Acquiring information from linkography in protocol studies of designing. Des. Stud. 29(4), 315–337 (2008)CrossRefGoogle Scholar
  46. 46.
    Gentner, D., Bowdle, B., Wolff, P., Boronat, C.: Metaphor is like analogy. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science. MIT Press, Cambridge (2001)Google Scholar
  47. 47.
    Grace, K., Saunders, R., Gero, J.: Interpretation-driven visual association. In: Proceedings of the Second International Conference on Computational Creativity, pp. 132–134 (2011)Google Scholar
  48. 48.
    Lakoff, G., Johnson, M.: The metaphorical structure of the human conceptual system. Cogn. Sci. 4(2), 195–208 (1980)CrossRefGoogle Scholar
  49. 49.
    Hofstadter, D.: Analogy as the core of cognition. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science. MIT Press, Cambridge (2001)Google Scholar
  50. 50.
    Ward, T.: Analogical distance and purpose in creative thought: mental leaps versus mental hops. In: Holyoak, K., Gentner, D., Kokinov, B. (eds.) Advances in Analogy Research: Integration of Theory and Data from the Cognitive, Computational, and Neural Sciences. NBU Series in Cognitive Science. NBU Press, Sofia (1998)Google Scholar
  51. 51.
    Heylighen, A.: Building memories. Build. Res. Inf. 35, 90–100 (2007)CrossRefGoogle Scholar
  52. 52.
    Cross, N.: Natural intelligence in design. Des. Stud. 20(1), 25–39 (1999)CrossRefGoogle Scholar
  53. 53.
    Jones, J.: Design methods reviewed. In: Gregory, S. (ed.) The Design Method. Butterworth, London (1966)Google Scholar
  54. 54.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library Series, vol. 337. Springer, Heidelberg (2007)Google Scholar
  55. 55.
    van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2011)Google Scholar
  56. 56.
    Bod, R.: Getting rid of derivational redundancy or how to solve Kuhn’s problem. Mind. Mach. 17(1), 47–66 (2007)CrossRefGoogle Scholar
  57. 57.
    Paavola, S.: Peircean abduction: instinct or inference? Semiotica 153, 131–154 (2005)Google Scholar
  58. 58.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 35–43 (2001)CrossRefGoogle Scholar
  59. 59.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J. Semant. Web Inf. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  60. 60.
    Berners-Lee, T., Connolly, D.: Notation 3 (N3): a readable RDF syntax. W3C team submission. http://www.w3.org/TeamSubmission/n3/
  61. 61.
    Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: a logical framework for the world wide web. Theor. Pract. Log. Prog. 8(3), 249–269 (2008)Google Scholar
  62. 62.
    De Roo, J.: Euler proof mechanism. http://www.agfa.com/w3c/euler/
  63. 63.
    Hawkins, J., Blakeslee, S.: On Intelligence. Times Books, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Logic Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations