LOCOSmotion: An Acceleration-Assisted Person Tracking System Based on Wireless LAN

  • Ngewi Fet
  • Marcus Handte
  • Stephan Wagner
  • Pedro José Marrón
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 362)


Pervasive computing envisions seamless and distraction-free support for tasks by means of context-aware applications. Location information is a key component in many context-aware applications. This article describes the design, implementation and evaluation of LOCOSmotion, an acceleration-assisted WLAN-based tracking system. The basis of localization in LOCOSmotion is WLAN fingerprinting as proposed in RADAR [2]. In order to achieve high location update rates, it augments fingerprinting with dead-reckoning using acceleration measurements to capture movement. To evaluate the performance of LOCOSmotion, this article presents the results of a set of laboratory experiments as well as results of the EvAAL 2012 competition in Madrid. Based on the lessons learned from deploying and using LOCOSmotion during EvAAL, we identify future directions for possible optimizations.


Indoor Localization Tracking Pervasive Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akeila, E., Salcic, Z.: a Swain, a Croft, and J Stott. Bluetooth-based indoor positioning with fuzzy based dynamic calibration. In: IEEE Region 10 Conference on TENCON 2010, pp. 1415–1420 (November 2010)Google Scholar
  2. 2.
    Bahl, P., Padmanabhan, V.N.: Radar: an in-building rf-based user location and tracking system. In: Proceedings of the IEEE Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2, pp. 775–784 (2000)Google Scholar
  3. 3.
    Baniukevic, A., Sabonis, D., Jensen, C.S., Lu, H.: Improving Wi-Fi Based Indoor Positioning Using Bluetooth Add-Ons. In: 2011 IEEE 12th International Conference on Mobile Data Management, pp. 246–255 (June 2011)Google Scholar
  4. 4.
    Barsocchi, P., Lenzi, S., Chessa, S., Furfari, F.: Automatic virtual calibration of range-based indoor localization systems. Wirel. Commun. Mob. Comput. (12), 1546–1557 (2012)Google Scholar
  5. 5.
    Focken, D., Stiefelhagen, R.: Towards vision-based 3-D people tracking in a smart room. In: Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, pp. 400–405 (2002)Google Scholar
  6. 6.
    Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. Communications Surveys & … 11(1), 13–32 (2009)CrossRefGoogle Scholar
  7. 7.
    Handte, M., Iqbal, U., Apolinarski, W., Wagner, S., Marrón, P.J.: The narf architecture for generic personal context recognition. In: 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), pp. 123–130 (June 2010)Google Scholar
  8. 8.
    Haverinen, J., Kemppainen, A.: A global self-localization technique utilizing local anomalies of the ambient magnetic field. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3142–3147 (May 2009)Google Scholar
  9. 9.
    Ingram, S.J., Harmer, D., Quinlan, M.: UltraWideBand Indoor Positioning Systems and their Use in Emergencies (1803)Google Scholar
  10. 10.
    Ji, Y., Biaz, S., Pandey, S., Agrawal, P.: Ariadne: a dynamic indoor signal map construction and localization system. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, MobiSys 2006, pp. 151–164. ACM, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Juels, A.: RFID security and privacy: a research survey. IEEE Journal on Selected Areas in Communications 24(2), 381–394 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Libby, R.: A simple method for reliable footstep detection in embedded sensor platforms (2008),
  13. 13.
    Lim, H., Kung, L.-C., Hou, J.C., Luo, H.: Zero-configuration indoor localization over ieee 802.11 wireless infrastructure. Wirel. Netw. 16(2), 405–420 (2010)CrossRefGoogle Scholar
  14. 14.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  15. 15.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: Indoor location sensing using active rfid. Wireless Networks 10, 701–710 (2004), 10.1023/B:WINE.0000044029.06344.ddGoogle Scholar
  16. 16.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: Indoor location sensing using active rfid. Wireless Networks 10, 701–710 (2004), 10.1023/B:WINE.0000044029.06344.ddGoogle Scholar
  17. 17.
  18. 18.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM Indoor Localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  20. 20.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications, 42–47 (1997)Google Scholar
  21. 21.
    Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.: A wireless lan-based indoor positioning technology. IBM Journal of Research and Development 48(5.6), 617–626 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ngewi Fet
    • 1
  • Marcus Handte
    • 1
  • Stephan Wagner
    • 1
  • Pedro José Marrón
    • 1
  1. 1.Networked Embedded SystemsUniversity of Duisburg-EssenGermany

Personalised recommendations