Visual Experience for Recognising Human Activities

  • Na Li
  • Martin Crane
  • Heather J. Ruskin
Part of the Communications in Computer and Information Science book series (CCIS, volume 362)

Abstract

Technologies for Ambient Assisted Living (AAL) combine new Information and Communication Technologies (ICT) to improve and increase the quality of life of the elderly. The SenseCam visual lifelogging device is now used not only to support memory recall, but also by research groups in other fields in order to investigate human lifestyle. Recent and continuing work in Dublin City University’s SCI-SYM centre has been an application and evaluation of a novel approach, namely use of the cross correlation matrix and Maximum Overlap Discrete Wavelet Transform (MODWT) to analyse SenseCam lifelog data streams. By examination of the eigenspectrum, we show that these approaches enable detection of key sources or major events in the time SenseCam recording, with MODWT also providing useful insight on details of major events. In this paper, we analyse the data collected from the EvAAL (Evaluating AAL System Through Competitive Benchmarking) competition. The results confirmed our previous findings [1, 2]. We believe that highlighting key episodes to identify event boundaries can be used to develop automatic classifiers for visual lifelogs, helping to infer different lifestyle characteristics.

Keywords

Ambient Assisted Living SenseCam time series methods EvAAL competition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, N., Crane, M., Ruskin, H.J.: Automatically detecting “significant events” on sensecam. ERCIM News 87 (2011)Google Scholar
  2. 2.
    Li, N., Crane, M., Ruskin, H.J., Gurrin, C.: Multiscaled Cross-Correlation Dynamics on SenseCam Lifelogged Images. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe, N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part I. LNCS, vol. 7732, pp. 490–501. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Chessa, S., Furfari, F., Potorti, F., Barsocchi, P., Tazari, M.-R., Wichert, R.: Evaluating AAL System Through competitive Benchmarking (EvAAL) - Technical Aspects of The First Competition Partnerships for Social Innovation in Europe, Proceedings of the AAL Forum, 617-623 (2011)Google Scholar
  4. 4.
    Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur, N., Wood, K.: SenseCam: A Retrospective Memory Aid. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Harper, R., Randall, D., Smyth, N., Evans, C., Heledd, L., Moore, R.: Thanks for the Memory. In: HCI 2007- Proceedings of the 21st BCS HCI Group Conference, Lancaster, U.K., pp. 39–42 (2007)Google Scholar
  6. 6.
    Harper, R., Randall, D., Smyth, N., Evans, C., Heledd, L., Moore, R.: The Past is a Different Place: They Do Things Differently There. In: Designing Interactive Systems, Cape Town, South Africa, pp. 271–280 (2008)Google Scholar
  7. 7.
    Doherty, A.R., Smeaton, A.F.: Automatically segmenting lifelog data into events. In: WIAMIS: 9th International Workshop on Images Analysis for Multimedia Interactive Services, pp. 20–23. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  8. 8.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Nunes Amaral, L.A., Stanley, H.E.: Universal and non-uiversal properties of cross-correlations in financial time series. Phys. Rev. Lett. 83(7), 1471–1474 (1999)CrossRefGoogle Scholar
  9. 9.
    Sharifi, S., Crane, M., Shamie, A., Ruskin, H.J.: Random matrix theory for portfolio optimization: A stability approach. Physica A 335(3-4), 629–643 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Conlon, T., Ruskin, H.J., Crane, M.: Random matrix theory and fund of funds portfolio optimisation. Physica A 382(2), 565–576 (2007)CrossRefGoogle Scholar
  11. 11.
    Conlon, T., Ruskin, H.J., Crane, M.: Wavelet multiscale analysis for Hedge Funds: Scaling and Strategies. Physica A, 5197–5204 (2008)Google Scholar
  12. 12.
    Schindler, K., Leung, H., Elger, C.E., Lehnertz, K.: Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130, 65–77 (2007)CrossRefGoogle Scholar
  13. 13.
    Schindler, K., Elger, C.E., Lehnertz, K.: Increasing synchronization may promote seizure termination: Evidence from status epilepticus. Clin., Neurophysiol. 118(9), 1955–1968 (2007)CrossRefGoogle Scholar
  14. 14.
    Kwapien, J., Drozda, S., Ionannides, A.A.: Temporal correlations versus noise in the correlation matrix formalism: An example of the brain auditory response. Phys. Rev. E 62, 5557–5564 (2000)CrossRefGoogle Scholar
  15. 15.
    Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Golderberger, A.L.: On the mosaic organization of DNA sequences. Phys. Rev. E 49, 1685–1689 (1994)CrossRefGoogle Scholar
  16. 16.
    Matos, J.A.O., Gama, S.M.A., Ruskin, H.J., Sharkasi, A.A., Crane, M.: An econophysics approach to the Portuguese Stock Index-PSI-20. Physica A 342, 665–676 (2004)CrossRefGoogle Scholar
  17. 17.
    Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Matsa, M.E., Peng, C.-K., Simons, M., Stanley, H.E.: Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E 51, 5084–5091 (1995)CrossRefGoogle Scholar
  18. 18.
    Heneghan, C., McDarby, G.: Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 62, 6103–6110 (2000)CrossRefGoogle Scholar
  19. 19.
    Burrus, C.S., Gopinath, R.A., Gao, H.: Introduction to wavelets and wavelets transforms. Prentice Hall (1997)Google Scholar
  20. 20.
    Percival, D.B., Walden, A.T.: Wavelet methods for time series analysis. Cambridge University press (2000)Google Scholar
  21. 21.
    Sharkasi, A., Crane, M., Ruskin, H.J., Matos, J.A.: The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms. Physica A 368, 511–521 (2006)CrossRefGoogle Scholar
  22. 22.
    O Conaire, C., O’Connor, N., Smeaton, A.F., Jones, G.J.F.: Organising a Daily Visual Diary Using Multi-Feature Clustering. In: SPIE Electronic Imaging- Multimedia Content Access: Algorithms and Systems, San Jose, California, USA (2007)Google Scholar
  23. 23.
    Doherty, A.R., Smeaton, A.F., Keansub, L., Daniel, E.: Multimodal segmentation of lifelog data. In: RIAO 2007 - Large-Scale Semantic Access to Content (Text, Image, Video and Sound), Pittsburgh, PA, USA, May, 30-June 1, pp. 21–38 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Na Li
    • 1
  • Martin Crane
    • 1
  • Heather J. Ruskin
    • 1
  1. 1.Centre for Scientific Computing & Complex Systems Modelling, School of ComputingDublin City UniversityIreland

Personalised recommendations