Advertisement

3D LBP-Based Rotationally Invariant Region Description

  • Jyotirmoy Banerjee
  • Adriaan Moelker
  • Wiro J. Niessen
  • Theo van Walsum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7728)

Abstract

Local binary patterns [LBP][1] are popular texture descriptors in many image analysis tasks. One of the important aspects of this texture descriptor is their rotational invariance. Most work in LBP has focused on 2D images. Here, we present a three dimensional LBP with a rotational invariant operator using spherical harmonics. Unlike Fehr and Burkhardt [2], the invariance is constructed implicitly, without considering all possible combinations of the pattern. We demonstrate the 3D LBP on phantom data and a clinical CTA dataset.

Keywords

Local Binary Pattern Dynamic Texture Vessel Structure Landmark Location Spherical Harmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)CrossRefGoogle Scholar
  2. 2.
    Fehr, J., Burkhardt, H.: 3d rotation invariant local binary patterns. In: ICPR, pp. 1–4 (2008)Google Scholar
  3. 3.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2005)Google Scholar
  4. 4.
    Tuceryan, M., Jain, A.K.: Handbook of pattern recognition & computer vision, pp. 235–276. World Scientific Publishing Co., Inc., River Edge (1993)CrossRefGoogle Scholar
  5. 5.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)Google Scholar
  6. 6.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49, 117–125 (2010)CrossRefGoogle Scholar
  7. 7.
    Sørensen, L., Shaker, S.B., de Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29, 559–569 (2010)CrossRefGoogle Scholar
  8. 8.
    Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.): Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific Publishing Co., Inc., River Edge (2000)Google Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  10. 10.
    Jun, B., Kim, T., Kim, D.: A compact local binary pattern using maximization of mutual information for face analysis. Pattern Recognition 44, 532–543 (2011)zbMATHCrossRefGoogle Scholar
  11. 11.
    Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.W.: Extended local binary patterns for texture classification. Image Vision Comput. 30, 86–99 (2012)CrossRefGoogle Scholar
  12. 12.
    Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing 18, 1107–1118 (2009)CrossRefGoogle Scholar
  13. 13.
    Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using lbp variance (lbpv) with global matching. Pattern Recognition 43, 706–719 (2010)zbMATHCrossRefGoogle Scholar
  14. 14.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing 19, 1657–1663 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: Wld: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1705–1720 (2010)CrossRefGoogle Scholar
  16. 16.
    Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Transactions on Image Processing 21, 1465–1477 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Green, R.: Spherical harmonic lighting: The gritty details. Archives of the Game Developers Conference (2003)Google Scholar
  18. 18.
    Kazhdan, M.M., Funkhouser, T.A., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Symposium on Geometry Processing, pp. 156–165 (2003)Google Scholar
  19. 19.
    Fehr, J.: Local rotation invariant patch descriptors for 3d vector fields. In: ICPR, pp. 1381–1384 (2010)Google Scholar
  20. 20.
    Gluckman, J.: Kurtosis and the phase structure of images. In: 3rd International Workshop on Statistical and Computational Theories of Vision (in conjunction with ICCV 2003) (2003)Google Scholar
  21. 21.
    Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences 1, 300–307 (2007)Google Scholar
  22. 22.
    Fuller, R.B.: U.s. patent no. 2,682,235 (building construction) (1954)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jyotirmoy Banerjee
    • 1
    • 2
  • Adriaan Moelker
    • 1
  • Wiro J. Niessen
    • 1
    • 2
  • Theo van Walsum
    • 1
    • 2
  1. 1.Dept. of RadiologyErasmus MCRotterdamThe Netherlands
  2. 2.Dept. of Medical InformaticsErasmus MCRotterdamThe Netherlands

Personalised recommendations