Efficient Development of User-Defined Image Recognition Systems

  • Julia Moehrmann
  • Gunther Heidemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7728)


Development processes for building image recognition systems are highly specialized and require expensive expert knowledge. Despite some effort in developing generic image recognition systems, use of computer vision technology is still restricted to experts. We propose a flexible image recognition system (FOREST), which requires no prior knowledge about the recognition task and allows non-expert users to build custom image recognition systems, which solve a specific recognition task defined by the user. It provides a simple-to-use graphical interface which guides users through a simple development process for building a custom recognition system. FOREST integrates a variety of feature descriptors which are combined in a classifier using a boosting approach to provide a flexible and adaptable recognition framework. The evaluation shows, that image recognition systems developed with this framework are capable of achieving high recognition rates.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, S., Roth, D.: Learning a Sparse Representation for Object Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    von Ahn, L., Dabbish, L.: Labeling Images With a Computer Game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326 (2004)Google Scholar
  3. 3.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape Context: A New Descriptor for Shape Matching and Object Recognition. In: NIPS, pp. 831–837 (2000)Google Scholar
  5. 5.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual Categorization With Bags of Keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)Google Scholar
  6. 6.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning Generative Visual Models From Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. In: Workshop on Generative-Model Based Vision (2004)Google Scholar
  7. 7.
    Freeman, W., Adelson, E.: The Design and Use of Steerable Filters. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)CrossRefGoogle Scholar
  8. 8.
    Hegazy, D., Denzler, J.: Boosting Colored Local Features for Generic Object Recognition. Pattern Recognition and Image Analysis 18, 323–327 (2008)CrossRefGoogle Scholar
  9. 9.
    Koskela, M., Laaksonen, J.: Semantic Annotation of Image Groups with Self-organizing Maps. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 518–527. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: PicSOM - Content-Based Image Retrieval With Self-Organizing Maps. Pattern Recognition Letters 21, 1199–1207 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive Image Features From Scale-Invariant Keypoints. Intl. J. of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Lu, F., Yang, X., Lin, W., Zhang, R., Yu, S.: Image Classification With Multiple Feature Channels. Optical Engineering 50, 057210 (2011)CrossRefGoogle Scholar
  13. 13.
    Manjunath, B., Ohm, J.R., Vasudevan, V., Yamada, A.: Color and Texture Descriptors. IEEE Trans. on Circuits and Systems for Video Technology 11, 703–715 (2001)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. on Pattern Analysis & Machine Intelligence 27, 1615–1630 (2005)CrossRefGoogle Scholar
  15. 15.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A Comparison of Affine Region Detectors. Intl. J. of Computer Vision 65, 43–72 (2005)CrossRefGoogle Scholar
  16. 16.
    Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the Usability of Hierarchical Representations for Interactively Labeling Large Image Data Sets. In: Jacko, J.A. (ed.) HCI International 2011, Part I. LNCS, vol. 6761, pp. 618–627. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Moehrmann, J., Heidemann, G.: Efficient Annotation of Image Data Sets for Computer Vision Applications. In: Proceedings of the Intl. Workshop on Visual Interfaces for Ground Truth Collection in Computer Vision Applications, pp. 2:1–2:6 (2012)Google Scholar
  18. 18.
    Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak Hhypotheses and Boosting for Generic Object Detection and Recognition, pp. 71–84 (2004)Google Scholar
  20. 20.
    Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic Object Recognition with Boosting. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 416–431 (2006)CrossRefGoogle Scholar
  21. 21.
    Quinn, A.J., Bederson, B.B.: Human Computation: A Survey and Taxonomy of a Growing Field. In: Proceedings of the Annual Conference on Human Factors in Computing Systems, pp. 1403–1412 (2011)Google Scholar
  22. 22.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: A Database and Web-Based Tool for Image Annotation. Intl. J. of Computer Vision 77, 157–173 (2008)CrossRefGoogle Scholar
  23. 23.
    Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision 3, 177–280 (2008)CrossRefGoogle Scholar
  24. 24.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511 (2001)Google Scholar
  25. 25.
    Yao, B., Yang, X., Zhu, S.-C.: Introduction to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 169–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Zhang, W., Yu, B., Zelinsky, G., Samaras, D.: Object Class Recognition Using Multiple Layer Boosting With Heterogeneous Features. In: Computer Vision and Pattern Recognition, vol. 2, pp. 323–330 (2005)Google Scholar
  27. 27.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. In: Computer Vision and Pattern Recognition Workshop, p. 13 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julia Moehrmann
    • 1
  • Gunther Heidemann
    • 1
  1. 1.Institute of Cognitive ScienceUniversity of OsnabrueckOsnabrueckGermany

Personalised recommendations