LBP − TOP Based Countermeasure against Face Spoofing Attacks

  • Tiago de Freitas Pereira
  • André Anjos
  • José Mario De Martino
  • Sébastien Marcel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7728)


User authentication is an important step to protect information and in this field face biometrics is advantageous. Face biometrics is natural, easy to use and less human-invasive. Unfortunately, recent work has revealed that face biometrics is vulnerable to spoofing attacks using low-tech cheap equipments. This article presents a countermeasure against such attacks based on the LBP − TOP operator combining both space and time information into a single multiresolution texture descriptor. Experiments carried out with the REPLAY ATTACK database show a Half Total Error Rate (HTER) improvement from 15.16% to 7.60%.


Support Vector Machine Face Recognition Linear Discriminant Analysis Local Binary Pattern Face Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Inteligence 28, 2037–2041 (2006)CrossRefGoogle Scholar
  2. 2.
    Anjos, A., El Shafey, L., Wallace, R., Günther, M., McCool, C., Marcel, S.: Bob: a free signal processing and machine learning toolbox for researchers. In: 20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan (2012)Google Scholar
  3. 3.
    Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011)Google Scholar
  4. 4.
    Chakka, M., Anjos, A., Marcel, S., Tronci, R., Muntoni, D., Fadda, G., Pili, M., Sirena, N., Murgia, G., Ristori, M., Roli, F., Yan, J., Yi, D., Lei, Z., Zhang, Z.: Competition on counter measures to 2-d facial spoofing attacks. In: IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011)Google Scholar
  5. 5.
    Chetty, G., Wagner, M.: Liveness verification in audio-video speaker authentication. In: Proceeding of International Conference on Spoken Language Processing, ICSLP, vol. 4, pp. 2509–2512 (2004)Google Scholar
  6. 6.
    Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: IEEE BIOSIG 2012 (2012)Google Scholar
  7. 7.
    Eveno, N., Besacier, L.: A speaker independent “liveness” test for audio-visual biometrics. In: Ninth European Conference on Speech Communication and Technology (2005)Google Scholar
  8. 8.
    Flynn, P., Jain, A., Ross, A.: Handbook of biometrics. Springer (2008)Google Scholar
  9. 9.
    Froba, B., Ernst, A.: Face detection with the modified census transform. In: 2004 Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 91–96. IEEE (2004)Google Scholar
  10. 10.
    Inen, M., Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, vol. 40. Springer (2011)Google Scholar
  11. 11.
    Johnson, P., Tan, B., Schuckers, S.: Multimodal fusion vulnerability to non-zero effort (spoof) imposters. In: 2010 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–5. IEEE (2010)Google Scholar
  12. 12.
    Kanematsu, M., Takano, H., Nakamura, K.: Highly reliable liveness detection method for iris recognition. In: 2007 Annual Conference, SICE, pp. 361–364. IEEE (2007)Google Scholar
  13. 13.
    Kollreider, K., Fronthaler, H., Bigun, J.: Non-intrusive liveness detection by face images. Image and Vision Computing 27, 233–244 (2009)CrossRefGoogle Scholar
  14. 14.
    Leyden, J.: Gummi bears defeat fingerprint sensors. The Register - 16 (2002)Google Scholar
  15. 15.
    Li, J., Wang, Y., Tan, T., Jain, A.: Live face detection based on the analysis of fourier spectra. Biometric Technology for Human Identification 5404, 296–303 (2004)CrossRefGoogle Scholar
  16. 16.
    Li, S., Jain, A.: Handbook of face recognition. Springer (2011)Google Scholar
  17. 17.
    Maatta, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using texture and local shape analysis. IET Biometrics 1, 3–10 (2012)CrossRefGoogle Scholar
  18. 18.
    Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of artificial gummy fingers on fingerprint systems. In: Proceedings of SPIE, vol. 4677, pp. 275–289 (2002)Google Scholar
  19. 19.
    Pacut, A., Czajka, A.: Aliveness detection for iris biometrics. In: Proceedings of the 2006 40th Annual IEEE International Carnahan Conferences Security Technology, pp. 122–129. IEEE (2006)Google Scholar
  20. 20.
    Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  21. 21.
    Tan, X., Li, Y., Liu, J., Jiang, L.: Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Trefnỳ, J., Matas, J.: Extended set of local binary patterns for rapid object detection. In: Proceedings of the Computer Vision Winter Workshop, vol. 2010 (2010)Google Scholar
  23. 23.
    Uludag, U., Jain, A.: Attacks on biometric systems: a case study in fingerprints. In: Proc. SPIE-EI, pp. 622–633 (2004)Google Scholar
  24. 24.
    Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31. IEEE (2012)Google Scholar
  25. 25.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 915–928 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tiago de Freitas Pereira
    • 1
    • 2
  • André Anjos
    • 3
  • José Mario De Martino
    • 1
  • Sébastien Marcel
    • 3
  1. 1.School of Electrical and Computer EngineeringUniversity of Campinas (UNICAMP)Brazil
  2. 2.CPqD Telecom & IT SolutionsBrazil
  3. 3.IDIAP Research InstituteSwitzerland

Personalised recommendations