Advertisement

High Level Sensor Data Fusion of Radar and Lidar for Car-Following on Highways

  • Michael Schnürmacher
  • Daniel Göhring
  • Miao Wang
  • Tinosch Ganjineh
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 480)

Abstract

We present a real-time algorithm which enables an autonomous car to comfortably follow other cars at various speeds while keeping a safe distance. We focus on highway scenarios. A velocity and distance regulation approach is presented that depends on the position as well as the velocity of the followed car. Radar sensors provide reliable information on straight lanes, but fail in curves due to their restricted field of view. On the other hand, lidar sensors are able to cover the regions of interest in almost all situations, but do not provide precise speed information. We combine the advantages of both sensors with a sensor fusion approach in order to provide permanent and precise spatial and dynamical data. Our results in highway experiments with real traffic will be described in detail.

Keywords

Data Fusion Lidar Data Radar Sensor Fusion Module Lidar Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank the German federal ministry of education and research (BMBF).

References

  1. 1.
    M. Buehler, K. Iagnemma, S. Singh, The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Volume 56 of Springer Tracts in Advanced Robotics (Springer, New York, 2009)Google Scholar
  2. 2.
    B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor Data Fusion: A Review of the State-of-the-Art. Information Fusion, 2011Google Scholar
  3. 3.
    N. Kaempchen, K.C. Fuerstenberg, A.G. Skibicki, K.C.J. Dietmayer, Sensor Fusion for Multiple Automotive Active Safety and Comfort Applications (2004), pp. 137–163Google Scholar
  4. 4.
    A. Ewald, Multisensor obstacle detection and tracking. Image Vis. Comput. 18, 389–396 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Dickmann, F. Diewald, M. Maehlisch, J. Klappstein, S. Zuther, S. Pietzsch, S. Hahn, M Munz, Environmental Perception for Future Integrated Safety Systems (2009)Google Scholar
  6. 6.
    B. Yamauchi, All-weather Perception for Man-portable Robots using Ultra-wideband Radar (2010), pp. 3610–3615Google Scholar
  7. 7.
    C. Blanc, L. Trassoudaine, Y. Le Guilloux, R. Moreira, Track to Track Fusion Method Applied to Road Obstacle Detection (2004)Google Scholar
  8. 8.
    M. Skutek, Ein PreCrash-System auf Basis multisensorieller Umgebungserfassung. PhD thesis, Technische Universitaet Chemnitz, 2006Google Scholar
  9. 9.
    M. Darms, P. Rybski, C. Urmson, An adaptive model switching approach for a multisensor tracking system used for autonomous driving in an urban environment. 2009, 521–530 (2008)Google Scholar
  10. 10.
    H. Winner, S. Hakuli, G. Wolf, Handbuch Fahrassistenzsysteme. Vieweg+Teubner and GMV Fachverlag GmbH, 2009Google Scholar
  11. 11.
    N. Kaempchen, K. Dietmayer, in Data Synchronization Strategies for Multi-sensor Fusion. Proceedings of the IEEE conference on intelligent transportation systems (2003), pp. 1–9Google Scholar
  12. 12.
    W. Wang, X. Huang, M. Wang, Out-of-sequence measurement algorithm based on gaussian particle filter. Inf. Technol. J. 9, 942–948 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Bar-Shalom, M. Mallick, H. Chen, One-step solution for the general out-of-sequence-measurement problem in tracking. Aerospace (2002)Google Scholar
  14. 14.
    R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  15. 15.
    J. Gao, C. Harris, Some remarks on kalman filters for the multisensor fusion. Inf. Fusion 3(3), 191–201 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    B.C. Ooi, Spatial kd-Tree: A Data Structure for Geographic, Database (1987)Google Scholar
  17. 17.
    P. Abbeel, A. Coates, M. Montemerlo, A.Y. Ng, S. Thrun, in Discriminative Training of Kalman Filters. Proceedings of robotics: science and systems (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Schnürmacher
    • 1
  • Daniel Göhring
    • 1
  • Miao Wang
    • 1
  • Tinosch Ganjineh
    • 1
  1. 1.Freie Universität BerlinInstitut für InformatikBerlinGermany

Personalised recommendations