Effectively Grouping Trajectory Streams

  • Gianni Costa
  • Giuseppe Manco
  • Elio Masciari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7765)


Trajectory data streams are huge amounts of data pertaining to time and position of moving objects. They are continuously generated by different sources exploiting a wide variety of technologies (e.g., RFID tags, GPS, GSM networks). Mining such amount of data is a challenging problem, since the possibility to extract useful information from this peculiar kind of data is crucial in many application scenarios such as vehicle traffic management, hand-off in cellular networks, supply chain management. Moreover, spatial data streams pose interesting challenges for their proper representation, thus making the mining process harder than for classical point data. In this paper, we address the problem of trajectory data streams clustering, that revealed really intriguing as we deal with a kind of data (trajectories) for which the order of elements is relevant. We propose a complete framework starting from data preparation task that allows us to make the mining step quite effective. Since the validation of data mining approaches has to be experimental we performed several tests on real world datasets that confirmed the efficiency and effectiveness of the proposed technique.


Concept Drift Trajectory Data Lift Scheme Trajectory Cluster Stream Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)Google Scholar
  2. 2.
    Arthur, D., Vassilvitskii, S.: k-means++ the advantages of careful seeding. In: SODA, pp. 1027–1035 (2007)Google Scholar
  3. 3.
    Cadez, I.V., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering individuals and objects. In: KDD, pp. 140–149 (2000)Google Scholar
  4. 4.
    Cao, H., Wolfson, O.: Nonmaterialized motion information in transport networks. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502. ACM, New York (2005)Google Scholar
  6. 6.
    Chong, Z., Ni, W., Xu, L., Xu, Z., Shu, H., Zheng, J.: Approximate k-median of location streams with redundancy and inconsistency. Int. J. of Software and Informatics 4(2), 165–182 (2010)Google Scholar
  7. 7.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)Google Scholar
  8. 8.
    Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of xml structural similarity. IEEE TKDE 17(2), 160–175 (2005)Google Scholar
  9. 9.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD, pp. 63–72 (1999)Google Scholar
  10. 10.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: KDD, pp. 330–339 (2007)Google Scholar
  11. 11.
    Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 763–775. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)Google Scholar
  13. 13.
    Hönle, N., Grossmann, M., Reimann, S., Mitschang, B.: Usability analysis of compression algorithms for position data streams. In: GIS, pp. 240–249 (2010)Google Scholar
  14. 14.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. In: PVLDB, vol. 1(1), pp. 1068–1080 (2008)Google Scholar
  15. 15.
    Keogh, E.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417. VLDB Endowment (2002)Google Scholar
  16. 16.
    Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect framework. In: ICDE, pp. 140–149 (2008)Google Scholar
  17. 17.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD (2007)Google Scholar
  18. 18.
    Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD, pp. 617–622 (2004)Google Scholar
  19. 19.
    Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010, Part II. LNCS, vol. 5982, pp. 32–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Lloyd, S.: Least squares quantization in pcm. IEEE TOIT 28 (1982)Google Scholar
  21. 21.
    Masciari, E.: A complete framework for clustering trajectories. In: ICTAI, pp. 9–16 (2009)Google Scholar
  22. 22.
    Masciari, E.: Trajectory clustering via effective partitioning. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 358–370. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Nehme, R.V., Rundensteiner, E.A.: SCUBA: Scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Puschel, M., Rotteler, M.: Fourier transform for the directed quincunx lattice. In: ICASSP (2005)Google Scholar
  25. 25.
    Secker, A., Taubman, D.: Lifting-based invertible motion adaptive transform (limat) framework for highly scalable video compression. IEEE Trans. on Image Processing 12(12), 1530–1542 (2003)CrossRefGoogle Scholar
  26. 26.
    Veenman, C.J., Reinders, M.J.T.: The nearest subclass classifier: A compromise between the nearest mean and nearest neighbor classifier. IEEE PAMI 27(9), 1417–1429 (2005)CrossRefGoogle Scholar
  27. 27.
    Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, p. 673Google Scholar
  28. 28.
    Wang, W., Yang, J., Muntz, R.R.: Sting: A statistical information grid approach to spatial data mining. In: VLDB, pp. 186–195 (1997)Google Scholar
  29. 29.
    Yang, J., Hu, M.: TrajPattern: Mining sequential patterns from imprecise trajectories of mobile objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 664–681. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: ICDE, pp. 201–208 (1998)Google Scholar
  31. 31.
    Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method for very large databases. In: SIGMOD, pp. 103–114 (1996)Google Scholar
  32. 32.
    Zhang, X., Wu, X., Wu, F.: Image coding on quincunx lattice with adaptive lifting and interpolation. In: Data Compression Conf., pp. 193–202 (2007)Google Scholar
  33. 33.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. In: WWW, pp. 791–800 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gianni Costa
    • 1
  • Giuseppe Manco
    • 1
  • Elio Masciari
    • 1
  1. 1.ICAR-CNRItaly

Personalised recommendations