2D Image Feature-Based Real-Time RGB-D 3D SLAM

Abstract

This paper proposes a real-time RGB-D (red-green-blue depth) 3D SLAM (simultaneous localization and mapping) system. Kinect style sensors give RGB-D data which contains 2D image and per-pixel depth information. 6-DOF (degree-of-freedom) visual odometry is obtained through the 3D-RANSAC (three-dimensional random sample consensus) algorithm with image features and depth information. For speed up extraction of features, parallel computation is performed on a GPU (graphics processing unit) processor. After a feature manager detects loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and 3D map. Experimental results show the processing rate over 20 Hz.

Keywords

SLAM 3D SLAM RGB-D camera image features 3D-RANSAC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation 17(3), 229–241 (2001)CrossRefGoogle Scholar
  2. 2.
    Endres, F., Burgard, W., Cremers, D.: A Benchmark for the Evaluation of RGB-D SLAM Systems. In: Proc. of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (August 2012)Google Scholar
  3. 3.
    Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: Proc. of 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1691–1696 (2012)Google Scholar
  4. 4.
    Engelharda, N., Endresa, F., Hessa, J., Sturmb, J., Burgarda, W.: Real-time 3D visual SLAM with a hand-held RGB-D camera. In: Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden (2011)Google Scholar
  5. 5.
    Hahnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proc. of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 206–211 (2003)Google Scholar
  6. 6.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research 31(5), 647–663 (2012)CrossRefGoogle Scholar
  7. 7.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics 24(6), 1365–1378 (2008)CrossRefGoogle Scholar
  8. 8.
    Krainin, M., Maturana, D., Fox, D.: Visual odometry and mapping for autonomous flight using an rgb-d camera. In: Proc. of The 15th International Symposium on Robotics Research, ISRR (2011)Google Scholar
  9. 9.
    Kummerle, R., Grisetti, G.: g2o: A General Framework for Graph Optimization. In: Proc. of 2011 IEEE International Conference on Robotics and Automation, ICRA (2011)Google Scholar
  10. 10.
    Michael, M., Sebastian, T., Daphne, K.: FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In: Proc. of The 18th International Joint Conference on Artificial Intelligence (2003)Google Scholar
  11. 11.
    Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: Proc. of 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)Google Scholar
  12. 12.
    Zhang, Z.: Microsoft Kinect Sensor and Its Effect. IEEE Multimedia 19(2), 4–10 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringKAISTYuseong-guRepublic of Korea
  2. 2.Robotics ProgramKAISTYuseong-guRepublic of Korea

Personalised recommendations