Web usage have been studied from the point of view of machine learning. Although web usage prediction are mostly restricted to an static web site structure, hence this results to be a hard restriction to accomplish in the practice. We propose a decision-making model that allow predicting web users’ navigation choices even in dynamics web sites. We propose a neurophysiological theory of web browsing decision making, which is based on the Leaky Competing Accumulator (LCA). The model is stochastic and has been studied in the context of Psychology for many years. Choices are performed to follow hyperlink according to user text preferences. This process is repeated until the web user decide to leave the web site. Model’s parameters are required to be fitted in order to perform Monte Carlo simulations. It has been observed that nearly 73% of the real distribution is recovered by this method.


Neurocomputing Web User Behavior LCA Neurophysiology Stochastic Equation Stochastic Simulation Text Preferences Web Session Curse of Dimensionality Markov processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Usher, M., McClelland, J.: The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review 2(1), 550–592 (2001)CrossRefGoogle Scholar
  2. 2.
    Laming, D.R.J.: Information theory of choice reaction time. Wiley (1968)Google Scholar
  3. 3.
    Ratcliff, R.: A theory of memory retrieval. Psychological Review 85(2), 59–108 (1978)CrossRefGoogle Scholar
  4. 4.
    Busemeyer, J.R., Jessup, R.K., Johnson, J.G., Townsend, J.T.: Building bridges between neural models and complex decision making behaviour. Neural Networks 19(8), 1047–1058 (2006)CrossRefMATHGoogle Scholar
  5. 5.
    Roitman, J.D., Shadlen, M.N.: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience 22, 9475–9489 (2002)Google Scholar
  6. 6.
    Britten, K.H., Shadlen, M.N., Newsome, W.T., Movshon, J.A.: Response of neurons in macaque motion signals. Visual Neuroscience 10, 1157–1169 (2006)CrossRefGoogle Scholar
  7. 7.
    Pirolli, P.: Power of 10: Modeling complex information-seeking systems at multiple scales. Computer 42, 33–40 (2009)CrossRefGoogle Scholar
  8. 8.
    Blum, A., Chan, T.H.H., Rwebangira, M.R.: A random-surfer web-graph model. In: Procs. ALENEX8 SIAM, pp. 238–246. SIAM (2006)Google Scholar
  9. 9.
    Román, P.E., Velásquez, J.D.: A dynamic stochastic model applied to the analysis of the web user behavior. In: The 2009 AWIC 6th Atlantic Web Intelligence Conference, pp. 31–40 (2009)Google Scholar
  10. 10.
    Román, P.E., Velásquez, J.D.: Analysis of the web user behavior with a psychologically-based diffusion model. In: The AAAI 2009 Fall Symp. BICA (2009)Google Scholar
  11. 11.
    Román, P.E., Velásquez, J.D.: Stochastic simulation of web users. In: Procs. of the 2010 WIC (September 2010)Google Scholar
  12. 12.
    Román, P.E.: Web User Behavior Analysis. PhD thesis, U. of Chile (2011)Google Scholar
  13. 13.
    Newey, W., McFadden, D.: Large sample estimation and hypothesis testing. Handbook of Econometrics 4, 2111–2245 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Manning, C.D., Schutze, H.: Fundation of Statistical Natural Language Processing. The MIT Press (1999)Google Scholar
  15. 15.
    Gillespie, D.T.: Exact numerical simulation of the ornstein-uhlenbeck process and its integral. Physical Review E 54(2), 2089–2091 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: Retrospective exact paths with applications. Bernoulli 12(6), 1077–1098 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Loyola, P., Román, P.E., Velásquez, J.D.: Predicting web user behavior using learning-based ant colony optimization. Eng. Appl. of AI 25(5), 889–897 (2012)Google Scholar
  18. 18.
    Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the evaluation of session reconstruction heuristics in web-usage analysis. Informs JOC 15(2), 171–190 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Huberman, B., Pirolli, P., Pitkow, J., Lukose, R.M.: Strong regularities in world wide web surfing. Science 280(5360), 95–97 (1998)CrossRefGoogle Scholar
  20. 20.
    Velasquez, J., Palade, V.: A knowledge base for the maintenance of knowledge. Journal of Knowledge Based Systems 1(20), 238–248 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pablo E. Román
    • 1
  • Juan D. Velásquez
    • 1
  1. 1.Department of Industrial EngineeringUniversidad de ChileSantiagoChile

Personalised recommendations