A Noise Tolerant Watershed Transformation with Viscous Force for Seeded Image Segmentation

  • Di Yang
  • Stephen Gould
  • Marcus Hutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7724)


The watershed transform was proposed as a novel method for image segmentation over 30 years ago. Today it is still used as an elementary step in many powerful segmentation procedures. The watershed transform constitutes one of the main concepts of mathematical morphology as an important region-based image segmentation approach. However, the original watershed transform is highly sensitive to noise and is incapable of detecting objects with broken edges. Consequently its adoption in domains where imaging is subject to high noise is limited. By incorporating a high-order energy term into the original watershed transform, we proposed the viscous force watershed transform, which is more immune to noise and able to detect objects with broken edges.


Image Segmentation Viscous Force Active Contour Model Topographic Relief Catchment Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. on Image Processing 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Li, C., Kao, C.Y., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. on Image Processing 17, 1940–1949 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Binder, K.: Ising model. In: Hazewinkel, Michiel, Encyclopedia of Mathematics. Springer (2001)Google Scholar
  4. 4.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: ICCV, pp. 105–112 (2001)Google Scholar
  5. 5.
    Digabel, H., Lantuejoul, C.: Iterative algorithms. In: European Symposium on Quantitative Analysis of Microstructures in Materials Sciences, Biology and Medicinen, Caen, France, pp. 85–99 (1977)Google Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)CrossRefGoogle Scholar
  7. 7.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7, 359–369 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press (1999)Google Scholar
  9. 9.
    Farouki, R.T.: Curves from motion, motion from curves. In: Curve and Surface Design: Saint- Malo. Vanderbilt Univ. Press (1999)Google Scholar
  10. 10.
    Grady, L.: Random walks for image segmentation. PAMI 28, 1768–1783 (2006)CrossRefGoogle Scholar
  11. 11.
    Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communication and Image Representation 1, 21–46 (1990)CrossRefGoogle Scholar
  12. 12.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: ICCV, pp. 731–738 (2009)Google Scholar
  13. 13.
    Li, C., Xu, C., Gui, C., Fox, M.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. on Image Processing 19, 3243–3254 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-time Edge and Motion Detection/ Estimation, Rennes, France (1979)Google Scholar
  15. 15.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings, shortest path forests, and topological watersheds. PAMI 32, 925–939 (2010)CrossRefGoogle Scholar
  16. 16.
    Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Meyer, F.: Inondation par des fluides visqueux. Technical report, Ecole des Mines de Pairs (1993)Google Scholar
  18. 18.
    Vachier, C., Meyer, F.: The viscous watershed transform. Journal of Mathematical Imaging and Vision 22, 251–267 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Alahari, K., Kohli, P., Torr, P.: Reduce, reuse and recycle: Efficiently solving multi-label MRFs. In: CVPR (2008)Google Scholar
  20. 20.
    Kohli, P., Kumar, M., Torr, P.: P3 beyond: Solving energies with higher order cliques. In: CVPR (2007)Google Scholar
  21. 21.
    Sinop, A.K., Grady, L.: A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm. In: ICCV, pp. 1–8 (2007)Google Scholar
  22. 22.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH, pp. 309–314 (2004)Google Scholar
  23. 23.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26, 530–549 (2004)CrossRefGoogle Scholar
  24. 24.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33, 898–916 (2011)CrossRefGoogle Scholar
  25. 25.
    Bertolini, G., Ramat, S.: Identification and recognition of objects in colour stereo images using a hierarchical som. In: Computer and Robot Vision, pp. 297–304 (2007)Google Scholar
  26. 26.
    Dailey, D., Cathey, F., Pumrin, S.: An algorithm to estimate mean traffic speed using uncalibrated cameras. IEEE Trans. on Intelligent Transportation Systems 1, 98–107 (2000)CrossRefGoogle Scholar
  27. 27.
    Omer, O., Tanaka, T.: Region-based weighted-norm approach to video super-resolution with adaptive regularisation. In: ICASSP, pp. 833–836 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Di Yang
    • 1
  • Stephen Gould
    • 1
  • Marcus Hutter
    • 1
  1. 1.Research School of Computer ScienceThe Australian National UniversityAustralia

Personalised recommendations