Tell Me What You Like and I’ll Tell You What You Are: Discriminating Visual Preferences on Flickr Data

  • Pietro Lovato
  • Alessandro Perina
  • Nicu Sebe
  • Omar Zandonà
  • Alessio Montagnini
  • Manuele Bicego
  • Marco Cristani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7724)


The John Ruskin’s 19th century adage suggests that personal taste is not merely an absolute set of aesthetic principles valid for everyone: actually, it is a process of interpretation which have also roots in one’s life experiences. This aspect represents nowadays a major problem for inferring automatically the quality of a picture. In this paper, instead of trying to solve this age-old problem, we consider an intriguing, orthogonal direction, aimed at discovering how different are the personal tastes. Given a set of preferred images of a user, obtained from Flickr, we extract a pool of low- and high-level features; LASSO regression is then exploited to learn the most discriminative ones, considering a group of 200 random Flickr users. Such aspects can be easily recovered, allowing to understand what is the “what we like” which distinguish us from the others. We then perform multi-class classification, where a test sample is a set of preferred pictures of an unknown user, and the classes are all the users. The results are surprising: given only 1 image as test, we can match the user preferences definitely more than the chance, and with 20 images we reach an nAUC of 91%, considering the cumulative matching characteristic curve. Extensive experiments promote our approach, suggesting new intriguing perspectives in the study of computational aesthetics.


Training Image Visual Preference Personal Taste Regression Score Lasso Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leder, H., Belke, B., Oeberst, A., Augustin, D.: A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology 95, 489–508 (2004)CrossRefGoogle Scholar
  2. 2.
    Martindale, C., Moore, K., Borkum, J.: Aesthetic preference: Anomalous findings for berlyne’s psychobiological theory. American Journal of Psychology 103, 53–80 (1990)CrossRefGoogle Scholar
  3. 3.
    Bronstad, P., Russell, R.: Beauty is in the “we” of the beholder: greater agreement on facial attractiveness among close relations. Perception 36, 1674–1681 (2007)CrossRefGoogle Scholar
  4. 4.
    Kaplan, R., Kaplan, S.: The Experience of Nature: A Psychological Perspective. Cambridge University Press (1989)Google Scholar
  5. 5.
    Bhattacharya, S., Sukthankar, R., Shah, M.: A framework for photo-quality assessment and enhancement based on visual aesthetics. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 271–280. ACM, New York (2010)Google Scholar
  6. 6.
    Adams, B.: Where does computational media aesthetics fit? IEEE Multimedia 10, 18–27 (2003)CrossRefGoogle Scholar
  7. 7.
    Yeh, C.H., Ho, Y.C., Barsky, B.A., Ouhyoung, M.: Personalized photograph ranking and selection system. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 211–220. ACM, New York (2010)Google Scholar
  8. 8.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying Aesthetics in Photographic Images Using a Computational Approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part III. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Su, H.H., Chen, T.W., Kao, C.C., Hsu, W.H., Chien, S.Y.: Preference-aware view recommendation system for scenic photos based on bag-of-aesthetics-preserving features. IEEE Transactions on Multimedia 14, 833–843 (2012)CrossRefGoogle Scholar
  10. 10.
    Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: CVPR 2006, pp. 419–426. IEEE Computer Society, Washington, DC (2006)Google Scholar
  11. 11.
    Luo, Y., Tang, X.: Photo and Video Quality Evaluation: Focusing on the Subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Biederman, I., Vessel, E.: Perceptual pleasure and the brain. American Scientist 94, 1–8 (2006)CrossRefGoogle Scholar
  13. 13.
    Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher. In: WWW, pp. 1009–1018 (2012)Google Scholar
  14. 14.
    Hielscher, R., Schaeben, H.: A novel pole figure inversion method: specification of the mtex algorithm. Journal of Applied Crystallography 41, 1024–1037 (2008)CrossRefGoogle Scholar
  15. 15.
    Bachmann, F., Hielscher, R., Schaeben, H.: Texture analysis with mtex–free and open source software toolbox. Solid State Phenomena 160, 63–68 (2010)CrossRefGoogle Scholar
  16. 16.
    Isola, P., Jianxiong, X., Torralba, A., Oliva, A.: What makes an image memorable? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 145–152 (2011)Google Scholar
  17. 17.
    Curran, W., Moore, T., Kulesza, T., Wong, W., Todorovic, S., Stumpf, S., White, R., Burnett, M.M.: Towards recognizing ”cool”: can end users help computer vision recognize subjective attributes of objects in images? In: ACM International Conference on Intelligent User Interfaces, pp. 285–288 (2012)Google Scholar
  18. 18.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  19. 19.
    Georgescu, C.: Synergism in low level vision. In: International Conference on Pattern Recognition, pp. 150–155 (2002)Google Scholar
  20. 20.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Discriminatively trained deformable part models, release 4 (2010),
  21. 21.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1627–1645 (2010)CrossRefGoogle Scholar
  22. 22.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  23. 23.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vision 42, 145–175 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58, 267–288 (1994)MathSciNetGoogle Scholar
  25. 25.
    Moon, H., Phillips, P.: Computational and performance aspects of pca-based face-recognition algorithms. Perception 30, 303–321 (2001)CrossRefGoogle Scholar
  26. 26.
    Cheng, D., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: Proceedings of British Machine Vision Conference (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pietro Lovato
    • 1
  • Alessandro Perina
    • 2
  • Nicu Sebe
    • 3
  • Omar Zandonà
    • 1
  • Alessio Montagnini
    • 1
  • Manuele Bicego
    • 1
  • Marco Cristani
    • 1
    • 4
  1. 1.University of VeronaItaly
  2. 2.Microsoft ResearchRedmondUSA
  3. 3.University of TrentoItaly
  4. 4.Istituto Italiano di Tecnologia (IIT)GenovaItaly

Personalised recommendations