SCA with Magnitude Squared Coherence

  • Sebastien Tiran
  • Philippe Maurine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7771)


Magnitude Squared Coherence (MSC) is a signal processing tool that indicates how well two time domain signals match one with the other by tracking linear dependencies in their spectral decomposition. Spectral Coherence ANalysis (SCAN) was the first way to use it as a Side-Channel Attack (SCA). This paper introduces two ways of using the Magnitude Squared Coherence in side-channel analyses. The first way is to use it as a distinguisher while the second consists in using it to transform the side-channel traces in a worthwhile manner. Additionally, an algorithm for fast computation of the SCAN is provided.


Secure Circuits Side-Channel Attacks Frequency Domain Distinguisher 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bévan, R., Knudsen, E.: Ways to enhance differential power analysis. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bohl, E., Hayek, J., Schimmel, O., Duplys, P., Rosenstiel, W.: Correlation power analysis in frequency domain. In: COSADE, Darmstadt, Germany (2010)Google Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Dehbaoui, A., Tiran, S., Maurine, P., Standaert, F.-X., Veyrat-Charvillon, N.: Spectral coherence analysis - first experimental results -. Cryptology ePrint Archive, Report 2011/056 (2011),
  5. 5.
    Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of rijndael and ECC on a wireless java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 250–264. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis – A generic side-channel distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Mateos, E., Gebotys, C.H.: A new correlation frequency analysis of the side channel. In: WESS, p. 4 (2010)Google Scholar
  9. 9.
    Meynard, O., Réal, D., Guilley, S., Flament, F., Danger, J.-L., Valette, F.: Characterization of the electromagnetic side channel in frequency domain. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 471–486. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Welch, P.D.: The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short. IEEE Trans. Audio Electroacoustics 15, 70–73 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison side-channel distinguishers: An empirical evaluation of statistical tests for univariate side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Tiran, S., Dehbaoui, A., Maurine, P.: Magnitude squared coherence based SCA. Cryptology ePrint Archive, Report 2012/077 (2012),
  14. 14.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: How, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Whitnall, C., Oswald, E., Mather, L.: An exploration of the kolmogorov-smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastien Tiran
    • 1
  • Philippe Maurine
    • 1
  1. 1.LIRMMUniversity of MontpellierMontpellierFrance

Personalised recommendations