Advertisement

Improving Side-Channel Analysis with Optimal Linear Transforms

  • David Oswald
  • Christof Paar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7771)

Abstract

Pre-processing techniques are widely used to increase the success rate of side-channel analysis when attacking (protected) implementations of cryptographic algorithms. However, as of today, the according steps are usually chosen heuristically. In this paper, we present an analytical expression for the correlation coefficient after applying a linear transform to the side-channel traces. Doing so, we are able to precisely quantify the influence of a linear filter on the result of a correlation power analysis. On this basis, we demonstrate the use of optimisation algorithms to efficiently and methodically derive “optimal” filter coefficients in the sense that they maximise a given definition for the distinguishability of the correct key candidate. We verify the effectiveness of our methods by analysing both simulated and real-world traces for a hardware implementation of the AES.

Keywords

side-channel analysis linear filtering countermeasures pre-processing attacks on protected implementations DPA contest v2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Barenghi, A., Pelosi, G., Teglia, Y.: Improving First Order Differential Power Attacks through Digital Signal Processing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, SIN 2010, pp. 124–133. ACM, New York (2010)Google Scholar
  3. 3.
    Barenghi, A., Pelosi, G., Teglia, Y.: Information Leakage Discovery Techniques to Enhance Secure Chip Design. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 128–143. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    COMELEC department, Télécom ParisTech. DPA Contest v2. Website, http://www.dpacontest.org/v2/index.php
  8. 8.
    Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of Rijndael and ECC on a Wireless Java-Based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 250–264. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis – A Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical Correlation Analysis: An Overview with Application to Learning Methods (May 2003)Google Scholar
  11. 11.
    Kasper, T., Oswald, D., Paar, C.: Side-Channel Analysis of Cryptographic RFIDs with Analog Demodulation. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 61–77. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Secaucus (2007)zbMATHGoogle Scholar
  14. 14.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis Attacks on Smartcards. In: USENIX Workshop on Smartcard Technology, pp. 151–162 (1999)Google Scholar
  15. 15.
    Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the Vulnerability of FPGA Bitstream Encryption against Power Analysis Attacks: Extracting keys from Xilinx Virtex-II FPGAs. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security (CCS 2011), pp. 111–124 (2011)Google Scholar
  16. 16.
    National Institute of Advanced Industrial Science and Technology (AIST). Side-channel Attack Standard Evaluation Board SASEBO-GII Specification, 1.01 edition (2009)Google Scholar
  17. 17.
    Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 207–222. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Plos, T., Hutter, M., Feldhofer, M.: Evaluation of Side-Channel Preprocessing Techniques on Cryptographic-Enabled HF and UHF RFID-Tag Prototypes. In: Dominikus, S. (ed.) Workshop on RFID Security — RFIDSEC 2008, pp. 114–127 (2008)Google Scholar
  19. 19.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Smith, J.O.: General LTI Filter Matrix. In: Introduction to Digital Filters with Audio Applications. Center for Computer Research in Music and Acoustics (2007), http://www.dsprelated.com/dspbooks/filters/
  22. 22.
    Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    The MathWorks, Inc. MATLAB R2011b Documentation, Optimization Toolbox, fminunc. Website (Online; accessed February 28, 2012)Google Scholar
  24. 24.
    Weisstein, E.W.: Variance. Mathworld - A Wolfram Web Resource (December 2010), http://mathworld.wolfram.com/Variance.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Oswald
    • 1
  • Christof Paar
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr-University BochumGermany

Personalised recommendations