Advertisement

Multipurpose Cryptographic Primitive ARMADILLO3

  • Petr Sušil
  • Serge Vaudenay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7771)

Abstract

This paper describes a new design of the multipurpose cryptographic primitive ARMADILLO3 and analyses its security. The ARMADILLO3 family is oriented on small hardware such as smart cards and RFID chips. The original design ARMADILLO and its variants were analyzed by Sepehrdad et al. at CARDIS’11, the recommended variant ARMADILLO2 was analyzed by Plasencia et al. at FSE’12 and by Abdelraheem et al. at ASIACRYPT’11. The ARMADILLO3 design takes the original approach of combining a substitution and a permutation layer. The new family ARMADILLO3 introduces a reduced-size substitution layer with 3 ×3 and 4 ×4 S-boxes, which covers the substitution layer from 25% to 100% of state bits, depending on the security requirements. We propose an instance ARMADILLO3-A1/4 with a pair of permutations and S-boxes applied on 25% of state bits at each stage.

Keywords

Hash Function Smart Card Block Cipher Advance Encryption Standard Stream Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelraheem, M.A., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.: Cryptanalysis of ARMADILLO2. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 308–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Badel, S., Dağtekin, N., Nakahara Jr., J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil, P., Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 398–412. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Collard, B., Standaert, F.X.: A Statistical Saturation Attack against the Block Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    De Cannière, C., Preneel, B.: Trivium - A Stream Cipher Construction Inspired by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher (2005)Google Scholar
  10. 10.
    Eastlake, D.E., Jones, P.E.: US Secure Hash Algorithm 1 (SHA1), http://www.ietf.org/rfc/rfc3174.txt?number=3174
  11. 11.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in RFID Protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Workshops 2006. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Kavun, E.B., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function for Radio-Frequency Identification Applications. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 258–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Merkle, R.C.: A Fast Software One-Way Hash Function. J. Cryptology 3(1), 43–58 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Naya-Plasencia, M., Peyrin, T.: Practical cryptanalysis of ARMADILLO2. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 146–162. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Ouafi, K., Vaudenay, S.: Pathchecker: An RFID application for tracing products in Supply-chains. In: Batina, L. (ed.) Proceedings of RFIDSec 2009 (2009)Google Scholar
  21. 21.
    Federal Information Processing Standards Publications. Advanced Encryption Standard. Technical Report FIPS PUB 197, National Institute of Standards and Technology (November 2001)Google Scholar
  22. 22.
    Sepehrdad, P., Sušil, P., Vaudenay, S.: Fast Key Recovery Attack on ARMADILLO1 and Variants. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 133–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: SQUASH – A new MAC with provable security properties for highly constrained devices such as RFID tags. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 144–157. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bulletin of the AMS 43(4), 439–561 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wheeler, D., Needham, R.: TEA, a Tiny Encryption Algorithm (1995)Google Scholar
  26. 26.
    Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Küçük, Ö., Preneel, B.: MAME: A Compression Function with Reduced Hardware Requirements. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Petr Sušil
    • 1
  • Serge Vaudenay
    • 1
  1. 1.EPFLLausanneSwitzerland

Personalised recommendations