Advertisement

On the Implementation Aspects of Sponge-Based Authenticated Encryption for Pervasive Devices

  • Tolga Yalçın
  • Elif Bilge Kavun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7771)

Abstract

Widespread use of pervasive devices has resulted in security problems which can not be solved by conventional algorithms and approaches. These devices are not only extremely resource-constrained, but most of them also require high performance – with respect to available resources – in terms of security, speed and latency. Especially for authenticated encryption, such performance can not be achieved with a standard encryption-hash algorithm pair or even a “block cipher mode of operation” approach. New ideas such as permutation-based authenticated encryption have to be explored. This scheme has been made possible by the introduction of sponge functions. Implementation feasibility of such an approach has yet to be explored. In this study, we make such an attempt by implementing the new SpongeWrap authenticated encryption schemes on all existing sponge functions and show that it is possible to realize a low-latency scheme in less than 6K gate equivalents at a throughput of 5 Gbps with a 128-bit claimed security level.

Keywords

Pervasive computing data security authenticated encryption sponge functions Keccak Photon Quark Spongent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansmann, U., Merk, L., Nicklous, M.S., Stober, T.: Pervasive Computing: The Mobile World. Springer (August 2003)Google Scholar
  2. 2.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-Verlag New York, Inc. (2007)Google Scholar
  3. 3.
    Allied Technique. Smart Cards (June 2012), http://www.alliedtechnique.com/smartcards/
  4. 4.
    Soliman, M.I., Abozaid, G.Y.: FPGA Implementation and Performance Evaluation of a High Throughput Crypto Coprocessor. J. Parallel Distrib. Comput. 71(8), 1075–1084 (2011)CrossRefGoogle Scholar
  5. 5.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Saarinen, M.-J.O., Engels, D.W.: A Do-It-All-Cipher for RFID: Design Requirements (Extended Abstract). IACR Cryptology ePrint Archive, 2012:317 (2012)Google Scholar
  7. 7.
    Aumasson, J.-P., Knellwolf, S., Meier, W.: Heavy Quark for secure AEAD. In: DIAC - Directions in Authenticated Ciphers, Sweden, July 5-6 (2012)Google Scholar
  8. 8.
    Ege, B., Kavun, E.B., Yalçın, T.: Memory Encryption for Smart Cards. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 199–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Specifications (2009)Google Scholar
  10. 10.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Hell, M., Johansson, T., Meier, W.: Grain: A Stream Cipher for Constrained Environments. Int. J. Wire. Mob. Comput. 2(1), 86–93 (2007)CrossRefGoogle Scholar
  13. 13.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Daemen, J.: Permutation-based Encryption, Authentication and Authenticated Encryption. In: DIAC - Directions in Authenticated Ciphers, Sweden, July 5-6 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tolga Yalçın
    • 1
  • Elif Bilge Kavun
    • 1
  1. 1.Horst Görtz Institute for IT-SecurityRuhr-Universität BochumGermany

Personalised recommendations