Evidence in Automatic Error Correction Improves Learners’ English Skill

  • Jiro Umezawa
  • Junta Mizuno
  • Naoaki Okazaki
  • Kentaro Inui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7817)

Abstract

Mastering proper article usage, especially in the English language, has been known to pose an extreme challenge to non-native speakers whose L1 languages have no concept of articles. Although the development of correction methods for article usage has posed a challenge for researchers, current methods do not perfectly correct the articles. In addition, proper article usage is not taught by these methods. Therefore, they are not useful for those wishing to learn a language with article usage. In this paper, we discuss the necessity of presenting evidence for corrections of English article usage. We demonstrate the effectiveness of this approach to improve the writing skills of English learners.

Keywords

English Article Automatic Correction Grammatical Error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leacock, C., Chodorow, M., Gamon, M., Tetreault, J.R.: Automated Grammatical Error Detection for Language Learners. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers (2010)Google Scholar
  2. 2.
    Nicholls, D.: The cambridge learner corpus - error coding and analysis for lexicography and elt. In: Corpus Linguistics 2003, pp. 572–581 (2003)Google Scholar
  3. 3.
    Dahlmeier, D., Ng, H.T., Ng, E.J.F.: NUS at the HOO 2012 Shared Task. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, pp. 216–224 (2012)Google Scholar
  4. 4.
    Dale, R., Anisimoff, I., Narroway, G.: HOO 2012: A report on the preposition and determiner error correction shared task. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, pp. 54–62 (June 2012)Google Scholar
  5. 5.
    Dale, R., Kilgarriff, A.: Helping our own: Text massaging for computational linguistics as a new shared task. In: Proceedings of the 6th International Natural Language Generation Conference, pp. 261–265 (2010)Google Scholar
  6. 6.
    Chodorow, M., Gamon, M., Tetreault, J.: The utility of article and preposition error correction systems for English language learners: Feedback and assessment. Language Testing 27(3), 419–436 (2010)CrossRefGoogle Scholar
  7. 7.
    Han, N.R., Chodorow, M., Leacock, C.: Detecting errors in English article usage by non-native speakers. Natural Language Engineering 12, 115–129 (2006)CrossRefGoogle Scholar
  8. 8.
    Minnen, G., Bond, F., Copestake, A.: Memory-based learning for article generation. In: Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, CoNLL 2000, pp. 43–48 (2000)Google Scholar
  9. 9.
    Gamon, M., Gao, J., Brockett, C., Klementiev, A., Dolan, W.B., Belenko, D., Vanderwende, L.: Using contextual speller techniques and language modeling for ESL error correction. In: Proceedings of the Third International Joint Conference on Natural Language Processing (IJCNLP 2008), pp. 449–456 (2008)Google Scholar
  10. 10.
    Gamon, M.: Using mostly native data to correct errors in learners’ writing: a meta-classifier approach. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (HLT 2010), pp. 163–171 (2010)Google Scholar
  11. 11.
    Nagata, R., Nakatani, K.: Evaluating performance of grammatical error detection to maximize learning effect. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010): Posters, pp. 894–900 (2010)Google Scholar
  12. 12.
    Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., Isahara, H.: Automatic error detection in the japanese learners’ English spoken data. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, vol. 2, pp. 145–148 (2003)Google Scholar
  13. 13.
    Lee, J.: Automatic article restoration. In: HLT-NAACL 2004: Student Research Workshop, pp. 31–36 (2004)Google Scholar
  14. 14.
    Chodorow, M., Tetreault, J., Han, N.R.: Detection of grammatical errors involving prepositions. In: Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, Prague, Czech Republic. Association for Computational Linguistics, pp. 25–30 (June 2007)Google Scholar
  15. 15.
    De Felice, R., Pulman, S.G.: A classifier-based approach to preposition and determiner error correction in L2 English. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pp. 169–176 (2008)Google Scholar
  16. 16.
    Tetreault, J.R., Chodorow, M.: The ups and downs of preposition error detection in ESL writing. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pp. 865–872 (2008)Google Scholar
  17. 17.
    Han, N.R., Tetreault, J.R., Lee, S.H., Ha, J.Y.: Using an error-annotated learner corpus to develop an ESL/EFL error correction system. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), pp. 763–770 (2010)Google Scholar
  18. 18.
    Gamon, M.: High-order sequence modeling for language learner error detection. In: Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 180–189 (2011)Google Scholar
  19. 19.
    Dahlmeier, D., Ng, H.T.: Grammatical error correction with alternating structure optimization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 915–923 (2011)Google Scholar
  20. 20.
    Brockett, C., Dolan, W.B., Gamon, M.: Correcting ESL errors using phrasal SMT techniques. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pp. 249–256 (2006)Google Scholar
  21. 21.
    Hermet, M., Désilets, A.: Using first and second language models to correct preposition errors in second language authoring. In: Proceedings of the Fourth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 64–72 (2009)Google Scholar
  22. 22.
    Yi, X., Gao, J., Dolan, W.B.: A web-based English proofing system for English as a second language users. In: Proceedings of the Third International Joint Conference on Natural Language Processing (IJCNLP 2008), pp. 619–624 (2008)Google Scholar
  23. 23.
    Rozovskaya, A., Roth, D.: Algorithm selection and model adaptation for ESL correction tasks. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 924–933 (2011)Google Scholar
  24. 24.
    Liu, T., Zhou, M., Gao, J., Xun, E., Huang, C.: PENS: a machine-aided English writing system for Chinese users. In: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, pp. 529–536 (2000)Google Scholar
  25. 25.
    Loper, E., Bird, S.: NLTK: the Natural Language Toolkit. In: Proceedings of the ACL 2002 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, vol. 1, pp. 63–70 (2002)Google Scholar
  26. 26.
    Tsuruoka, Y., Tateishi, Y., Kim, J.-D., Ohta, T., McNaught, J., Ananiadou, S., Tsujii, J.: Developing a robust Part-of-Speech tagger for biomedical text (chapter 36). In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 382–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Bird, S., Dale, R., Dorr, B., Gibson, B., Joseph, M., Kan, M.Y., Lee, D., Powley, B., Radev, D., Tan, Y.F.: The ACL Anthology Reference Corpus: A reference dataset for bibliographic research in computational linguistics. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation, LREC 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jiro Umezawa
    • 1
  • Junta Mizuno
    • 1
  • Naoaki Okazaki
    • 1
    • 2
  • Kentaro Inui
    • 1
  1. 1.Tohoku UniversityAobakuJapan
  2. 2.Japan Science and Technology Agency (JST)Japan

Personalised recommendations