Salient Features and Snapshots in Time: An Interdisciplinary Perspective on Object Representation

  • Veronica E. Arriola-Rios
  • Zoe P. Demery
  • Jeremy Wyatt
  • Aaron Sloman
  • Jackie Chappell
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)


Faced with a vast, dynamic environment, some animals and robots often need to acquire and segregate information about objects. The form of their internal representation depends on how the information is utilised. Sometimes it should be compressed and abstracted from the original, often complex, sensory information, so it can be efficiently stored and manipulated, for deriving interpretations, causal relationships, functions or affordances. We discuss how salient features of objects can be used to generate compact representations, later allowing for relatively accurate reconstructions and reasoning. Particular moments in the course of an object-related process can be selected and stored as ‘key frames’. Specifically, we consider the problem of representing and reasoning about a deformable object from the viewpoint of both an artificial and a natural agent.


Representations Learning Exploration Cognitive Agents Animal Cognition Deformable Objects Affordances Dynamic Representation Salient Features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chappell, J., Sloman, A.: Natural and artificial meta-configured altricial information-processing systems. International Journal of Unconventional Computing 3(3), 211–239 (2007)Google Scholar
  2. 2.
    Calvo, P., Gomila, T. (eds.): Handbook of cognitive science: An embodied approach. Elsevier, London (2008)Google Scholar
  3. 3.
    White, R.W.: Motivation reconsidered: The concept of competence. Psychological Review 66(5), 297–333 (1959)CrossRefGoogle Scholar
  4. 4.
    Schulz, L., Sommerville, J.: God does not play dice: Causal determinism and preschoolers’ causal inferences. Child Development 77(2), 427–442 (2006)CrossRefGoogle Scholar
  5. 5.
    Thomas, R.: Investigating cognitive abilities in animals: unrealized potential. Cognitive Brain Research 3(3-4), 157–166 (1996)CrossRefGoogle Scholar
  6. 6.
    Visalberghi, E., Tomasello, M.: Primate causal understanding in the physical and psychological domains. Behavioural Processes 42, 189–203 (1997)CrossRefGoogle Scholar
  7. 7.
    McCrone, J.: Smarter than the average bug. New Scientist 190(2553), 37–39 (2006)Google Scholar
  8. 8.
    Demery, Z.P., Chappell, J., Martin, G.R.: Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus. Proceedings of the Royal Society B 278(1725), 3687–3693 (2011)CrossRefGoogle Scholar
  9. 9.
    Markram, H.: The blue brain project. Nature Reviews Neuroscience 7(2), 153–160 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Demery, Z., Arriola-Rios, V.E., Sloman, A., Wyatt, J., Chappell, J.: Construct to understand: learning through exploration. In: Proceedings of the International Symposium on AI-Inspired Biology, pp. 59–61 (2010)Google Scholar
  11. 11.
    Mesulam, M.: From sensation to cognition. Brain 121, 1013–1052 (1998)CrossRefGoogle Scholar
  12. 12.
    Shaw, J.M.: Unifiying Perception and Curiosity. PhD thesis, University of Rochester, Department of Computer Science, The College Arts and Sciences. Rochester, New York (2006); Supervised by Professor Dana H. BallardGoogle Scholar
  13. 13.
    Chappell, J., Demery, Z.P., Arriola-Rios, V., Sloman, A.: How to build an information gathering and processing system: Lessons from naturally and artificially intelligent systems. Behavioural Processes 89(2), 179–186 (2012)CrossRefGoogle Scholar
  14. 14.
    Arriola, V.E., Savage, J.: Knowledge Acquisition and Automatic Generation of Rules for the Inference Machine CLIPS. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 725–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Karmiloff-Smith, A.: Beyond Modularity: a developmental perspective on cognitive science. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    von Bayern, A.M., Heathcote, R.J., Rutz, C., Kacelnik, A.: The role of experience in problem solving and innovative tool use in crows. Current Biology 19(22), 1965–1968 (2009)CrossRefGoogle Scholar
  17. 17.
    Minsky, M.: A framework for representing knowledge. In: Winston, P. (ed.) The Psychology of Computer Vision, p. 81. McGraw-Hill, NY (1975)Google Scholar
  18. 18.
    Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing 19(14), 1023–1040 (2001)CrossRefGoogle Scholar
  19. 19.
    Barber, B.: How to Draw Everything. Arcturus (2009)Google Scholar
  20. 20.
    Hoffmann, C.M., Rossignac, J.R.: A road map to solid modeling. IEEE Transactions on Visualization and Computer Graphics 2, 3–10 (1996)CrossRefGoogle Scholar
  21. 21.
    Siskind, J.M.: Grounding language in perception. Artificial Intelligence Review 8, 371–391 (1994)CrossRefGoogle Scholar
  22. 22.
    Parent, R. (ed.): Computer Animation. Morgan Kaufmann (2009)Google Scholar
  23. 23.
    Menache, A.: Understanding Motion Capture for Computer Animation. Elsevier, London (2011)Google Scholar
  24. 24.
    Teschner, M., Heidelberg, B., Muller, M., Gross, M.: A versatile and robust model for geometrically complex deformable solids. In: Proceedings of Computer Graphics International (CGI 2004), pp. 312–319 (2004)Google Scholar
  25. 25.
    Steels, L.: The symbol grounding problem has been solved. so what’s next? In: de Vega, M. (ed.) Symbols and Embodiment: Debates on Meaning and Cognition, Oxford University Press, Oxford (2008)Google Scholar
  26. 26.
    Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 483–496. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
  28. 28.
    Morris, D., Salisbury, K.: Automatic preparation, calibration, and simulation of deformable objects. Computer Methods In Biomechanics And Biomedical Engineering 11(3), 263–279 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Veronica E. Arriola-Rios
    • 1
  • Zoe P. Demery
    • 2
  • Jeremy Wyatt
    • 1
  • Aaron Sloman
    • 1
  • Jackie Chappell
    • 2
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.School of BiosciencesUniversity of BirminghamBirminghamUK

Personalised recommendations