Advertisement

Recursive Adjustment Approach for the Estimation of Physical Earth Parameters from Polar Motion

  • S. KirschnerEmail author
  • F. Seitz
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

The connection between highly precise time series of Earth orientation parameters (EOP) and geophysical processes in the Earth system can be studied on the basis of analytical or numerical forward models. Such models are dependent on a variety of parameters describing geometrical, physical or rheological properties of the Earth. A sensitivity analysis showed that some weakly determined Earth parameters (e.g. Love numbers) have a large effect on the forward model results. We aim at the improvement of such parameters on the basis of observed EOP. In order to make use of the long EOP time series that cover several decades, a recursive adjustment procedure is being developed. We present the principle of the approach and compare it to a least-squares adjustment in the Gauss–Helmert model. It is shown that both approaches are comparable with respect to the results, but the recursive procedure is superior in terms of computational efficiency. Our study focuses on the pole tide Love number k2, a specifically critical model parameter that is directly related to period and damping of the modelled Chandler oscillation. In order to simplify the case, the algorithm is developed and tested for an example of a two-dimensional spring mass damper system in which the simulated damped oscillation is equivalent to the Chandler oscillation.

Keywords

Earth rotation Euler–Liouville equation Pole tide Love number Recursive adjustment Inverse problem 

Notes

Acknowledgements

This study is part of project P9 supported by the German Research Foundation (DFG) within Research Unit FOR 584 Earth Rotation and Global Dynamic Processes.

References

  1. Bizouard C, Gambis D (2008) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: Drewes H (ed) Series international association of geodesy symposia, vol 134, Springer Verlag series, pp 330Google Scholar
  2. Kutterer H, Neumann I (2010) Recursive least-squares estimation in case of interval observation data. In: Beer M, Muhanna RL, Mullen RL (eds) Observing our changing Earth, Proc. 4th International Workshop REC 2010. Research Publishing, Singapore, pp 101–116Google Scholar
  3. Lambeck K (1980) The Earth’s vaiable rotation: geophysical causes and consequences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. McCarthy D, Petit G (eds) (2004) IERS conventions 2003, IERS TN 32, BKG, FankfurtGoogle Scholar
  5. Munk W, MacDonald G (1960) The rotation of the Earth a geophysical discussion. Cambridge University Press, CambridgeGoogle Scholar
  6. Niemeier W (2008) Ausgleichungsrechnung. de Gruyter, BerlinCrossRefGoogle Scholar
  7. Seitz F, Kirschner S, Neubersch D (2012) Determination of the Earth’s pole tide Love number k 2 from observations of polar motion using an adaptive Kalman filter approach. J Geophys Res 117:B09403. doi:10.1029/2012JB009296Google Scholar
  8. Seitz F, Kutterer H (2005) Sensitivity analysis of the non-linear Liouville equation. In: Sansò F (ed) A window on the future of geodesy, IAG Symposia, vol 128. Springer, New York, pp 601–606. doi:10.1007/3-540-27432-4_102CrossRefGoogle Scholar
  9. Seitz F, Schuh H (2010) Earth rotation. In: Xu G (ed) Sciences of geodesy I. Springer, New York, pp 185–227. doi:10.1007/978-3-642-11741-1_6CrossRefGoogle Scholar
  10. Seitz F, Stuck J, Thomas M (2004) Consistent atmospheric and oceanic excitation of the Earth’s free polar motion. Geophys J Int 157(1): 25–35. doi:10.1111/j.1365-246X.2004.02208.xCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Chair of Geodetic GeodynamicsTechnische Universität MünchenMünchenGermany

Personalised recommendations