An Agent-Based Model for Simultaneous Phone and SMS Traffic over Time

  • Kenneth Joseph
  • Wei Wei
  • Kathleen M. Carley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7812)

Abstract

The present work describes a utility-based, multi-agent, dynamic network model of phone call and SMS traffic in a population. The simulation is novel in its ability to generate interactions from both an asymmetric and a symmetric media simultaneously. Within the model, we develop and test a simple extension to the theory of media multiplexity, a well-known theory of how humans use the communication media available to them with different alters (friends). Model output qualitatively matches patterns in real data at the network-level and with respect to how humans use SMS and voice calls with different alters and thus shows general support for our theoretical claim.

Keywords

agent-based modeling dynamic networks interpersonal communication theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baym, N.K.: Personal Connections in the Digital Age. In: Polity (July 2010)Google Scholar
  2. 2.
    Haythornthwaite, C.: Strong, weak, and latent ties and the impact of new media. The Information Society 18(5), 385–401 (2002)CrossRefGoogle Scholar
  3. 3.
    Simon, H.A.: Bounded rationality. The New Palgrave: Utility and Probability, 15–18 (1987)Google Scholar
  4. 4.
    Silverstone, R., Haddon, L.: Design and the domestication of ICTs: technical change and everyday life. In: Communicating by Design: The Politics of Information and Communication Technologies., pp. 44–74. Oxford University Press, Oxford (1996)Google Scholar
  5. 5.
    Ling, R., Bertel, T.F., Sundsy, P.R.: The socio-demographics of texting: An analysis of traffic data. New Media & Society 14(2), 281–298 (2012)CrossRefGoogle Scholar
  6. 6.
    Xu, X.K., Wang, J.B., Wu, Y., Small, M.: Pairwise interaction pattern in the weighted communication network (March 2012), arXiv:1203.1105Google Scholar
  7. 7.
    Du, N., Faloutsos, C., Wang, B., Akoglu, L.: Large human communication networks: Patterns and a utility-driven generator. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 269–278. ACM, New York (2009)CrossRefGoogle Scholar
  8. 8.
    Short, J., Williams, E., Christie, B.: The Social Psychology of Telecommunications. John Wiley and Sons Ltd. (September 1976)Google Scholar
  9. 9.
    Hampton, K.N., Sessions, L.F., Her, E.J., Raine, L.: Social Isolation and New Technology. Pew Internet and American Life Project (November 2008) pewinternet.org/Reports/2009/18Social-Isolation-and-New-Technology.aspx (accessed January 10, 2011)
  10. 10.
    Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)CrossRefGoogle Scholar
  11. 11.
    Wu, Y., Zhou, C., Xiao, J., Kurths, J., Schellnhuber, H.J.: Evidence for a bimodal distribution in human communication. Proceedings of the National Academy of Sciences (October 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kenneth Joseph
    • 1
    • 2
  • Wei Wei
    • 1
    • 2
  • Kathleen M. Carley
    • 1
    • 2
  1. 1.iLab, Heinz CollegeCarnegie Mellon UniversityPittsburghUSA
  2. 2.Institute for Software ResearchCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations