Intruder or Welcome Friend: Inferring Group Membership in Online Social Networks

  • Ofrit Lesser
  • Lena Tenenboim-Chekina
  • Lior Rokach
  • Yuval Elovici
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7812)


Inferring Online Social Networks (OSN) group members may help to evaluate the authenticity of an applicant asking to join a certain group, and secure vulnerable populations online, such as children. We propose machine learning based methods, which associate OSN members’ affiliation with virtual groups based on personal, topological, and group affiliation features. The study applies and evaluates the methods empirically, on two social networks (Ning and TheMarker). The experimental results demonstrate that one can accurately determine the group genuine members. Our study compares personal, topological and group based classification models. The results show that topological and group affiliation attributes contribute the most to group inference accuracy. Additionally, we examine the relations among the groups and identify group clustering tendencies where some groups are more tightly connected than others.


social networks group prediction machine learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. (2002)Google Scholar
  2. 2.
    Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5) (2010)Google Scholar
  3. 3.
    Boccalettia, S., Latora, V., Moreno, Y., Chavezf, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fire, M., et al.: Link Prediction in Social Networks Using Computationally Efficient Topological Features. IEEE SOCIALCOM (2011)Google Scholar
  5. 5.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99 (2002)Google Scholar
  6. 6.
    Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Community structure in online collegiate social networks. eprint arXiv:0809.0690 (2008)Google Scholar
  7. 7.
    Traud, A.L., Mucha, P.J., Porter, M.A., Kelsic, E.D.: Comparing community structure to characteristics in online collegiate social networks. SIAM Review (2011)Google Scholar
  8. 8.
    Friggeri, A., Chelius, G., Fleury, E.: Triangles to Capture Social Cohesion. IEEE Passat 2011 (2011)Google Scholar
  9. 9.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)CrossRefGoogle Scholar
  10. 10.
    Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 437–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)Google Scholar
  12. 12.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory and Experiment 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ofrit Lesser
    • 1
  • Lena Tenenboim-Chekina
    • 2
  • Lior Rokach
    • 1
  • Yuval Elovici
    • 1
    • 2
  1. 1.Department of Information Systems EngineeringBen Gurion University of the NegevIsrael
  2. 2.Telekom Innovation LaboratoriesBen-Gurion University of the NegevIsrael

Personalised recommendations