Advertisement

Robustness and Evolvability of Recombination in Linear Genetic Programming

  • Ting Hu
  • Wolfgang Banzhaf
  • Jason H. Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7831)

Abstract

The effect of neutrality on evolutionary search is known to be crucially dependent on the distribution of genotypes over phenotypes. Quantitatively characterizing robustness and evolvability in genotype and phenotype spaces greatly helps to understand the influence of neutrality on Genetic Programming. Most existing robustness and evolvability studies focus on mutations with a lack of investigation of recombinational operations. Here, we extend a previously proposed quantitative approach of measuring mutational robustness and evolvability in Linear GP. By considering a simple LGP system that has a compact representation and enumerable genotype and phenotype spaces, we quantitatively characterize the robustness and evolvability of recombination at the phenotypic level. In this simple yet representative LGP system, we show that recombinational properties are correlated with mutational properties. Utilizing a population evolution experiment, we demonstrate that recombination significantly accelerates the evolutionary search process and particularly promotes robust phenotypes that innovative phenotypic explorations.

Keywords

Robustness Evolvability Accessibility Neutrality Recombination Genetic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Azevedo, R.B., Lohaus, R., Srinivasan, S., Dang, K.K., Burch, C.L.: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440(2), 87–90 (2006)CrossRefGoogle Scholar
  3. 3.
    Banzhaf, W.: Genotype-phenotype mapping and neutral variation - a case study in genetic programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, ch. 14, pp. 207–221. Springer (2006)Google Scholar
  5. 5.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann (1998)Google Scholar
  6. 6.
    Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.: The ascent of the abundant: How mutational networks constrain evolution. PLoS Computational Biology 4(7), e1000110 (2008)Google Scholar
  7. 7.
    De Visser, J.A.G.M., Hermission, J., Wagner, G.P., Meyers, L.A., Bagheri-Chaichian, H., et al.: Evolution and detection of genetic robustness. Evolution 57(9), 1959–1972 (2003)Google Scholar
  8. 8.
    Draghi, J.A., Parsons, T.L., Wagner, G.P., Plotkin, J.B.: Mutational robustness can facilitate adaptation. Nature 463, 353–355 (2010)CrossRefGoogle Scholar
  9. 9.
    Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolvability. Complexity 7(2), 19–33 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Francone, F.D., Conrads, M., Banzhaf, W., Nordin, P.: Homologous crossover in genetic programming. In: Banzhaf, W., Daida, J.M., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M.J., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1021–1026 (1999)Google Scholar
  11. 11.
    Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1149–1156 (2006)Google Scholar
  12. 12.
    Hansen, J.V.: Genetic programming experiments with standard and homologous crossover methods. Genetic Programming and Evolvable Machines 4, 53–66 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in linear genetic programming. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 963–970 (2009)Google Scholar
  14. 14.
    Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, Evolvability, and Accessibility in Linear Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 13–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genetic Programming and Evolvable Machines 13, 305–337 (2012)CrossRefGoogle Scholar
  16. 16.
    Kirschner, M., Gerhart, J.: Evolvability. Proceedings of the National Academy of Sciences 95, 8420–8427 (1998)CrossRefGoogle Scholar
  17. 17.
    Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J., Hartl, D.L.: Genetic properties influcing the evolvability of gene expression. Science 317, 118–121 (2007)CrossRefGoogle Scholar
  18. 18.
    Lenski, R.E., Barrick, J.E., Ofria, C.: Balancing robustness and evolvability. PLoS Biology 4(12), e428 (2006)Google Scholar
  19. 19.
    Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Proceedings of the Annual Conference on Genetic Programming, pp. 240–248 (1997)Google Scholar
  20. 20.
    Martin, O.C., Wagner, A.: Effects of recombination on complex regulatory circuits. Genetics 183, 673–684 (2009)CrossRefGoogle Scholar
  21. 21.
    Masel, J., Trotter, M.V.: Robustness and evolvability. Trends in Genetics 26, 406–414 (2010)CrossRefGoogle Scholar
  22. 22.
    McBride, R.C., Ogbunugafor, C.B., Turner, P.E.: Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology 8, 231 (2008)CrossRefGoogle Scholar
  23. 23.
    Neher, R.A., Shraiman, B.I., Fisher, D.S.: Rate of adaptation in large sexual populations. Genetics 184, 467–481 (2010)CrossRefGoogle Scholar
  24. 24.
    Otto, S.P.: The evolutionary enigma of sex. The American Naturalist 174(s1), s1–s14 (2009)Google Scholar
  25. 25.
    Pigliucci, M.: Is evolvability evolvable? Nature Review Genetics 9, 75–82 (2008)CrossRefGoogle Scholar
  26. 26.
    Platel, M.D., Clergue, M., Collard, P.: Maximum Homologous Crossover for Linear Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 194–203. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R.L. (eds.) Proceedings of the Annual Conference on Genetic Programming, pp. 293–301 (1998)Google Scholar
  28. 28.
    Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evolutionary Computation 11(4), 381–415 (2003)CrossRefGoogle Scholar
  29. 29.
    Soule, T.: Resilient individuals improve evolutionary search. Artificial Life 12, 17–34 (2006)CrossRefGoogle Scholar
  30. 30.
    Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines 3, 283–309 (2002)zbMATHCrossRefGoogle Scholar
  31. 31.
    Wagner, A.: Robustness, evolvability, and neutrality. Federation of European Biochemical Societies Letters 579(8), 1772–1778 (2005)CrossRefGoogle Scholar
  32. 32.
    Wagner, A.: Robustness and evolvability: A paradox resolved. Proceedings of The Royal Society B 275(1630), 91–100 (2008)CrossRefGoogle Scholar
  33. 33.
    Wagner, A.: The low cost of recombination in creating novel phenotypes. BioEssays 33(8), 636–646 (2011)CrossRefGoogle Scholar
  34. 34.
    White, D.R., Poulding, S.: A Rigorous Evaluation of Crossover and Mutation in Genetic Programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Wilke, C.O.: Adaptive evolution on neutral networks. Bulletin of Mathematical Biology 63, 715–730 (2001)CrossRefGoogle Scholar
  36. 36.
    Yu, T., Miller, J.F.: Through the interaction of neutral and adaptive mutations, evolutionary search finds a way. Artificial Life 12, 525–551 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ting Hu
    • 1
  • Wolfgang Banzhaf
    • 2
  • Jason H. Moore
    • 1
  1. 1.Computational Genetics LaboratoryGeisel School of Medicine, Dartmouth CollegeLebanonUSA
  2. 2.Department of Computer ScienceMemorial UniversitySt. John’sCanada

Personalised recommendations