Adaptive MOEA/D for QoS-Based Web Service Composition

  • Mihai Suciu
  • Denis Pallez
  • Marcel Cremene
  • Dumitru Dumitrescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7832)


QoS aware service composition is one of the main research problem related to Service Oriented Computing (SOC). A certain functionality may be offered by several services having different Quality of Service (QoS) attributes. Although the QoS optimization problem is multiobjective by its nature, most approaches are based on single-objective optimization. Compared to single-objective algorithms, multiobjective evolutionary algorithms have the main advantage that the user has the possibility to select a posteriori one of the Pareto optimal solutions. A major challenge that arises is the dynamic nature of the problem of composing web services. The algorithms performance is highly influenced by the parameter settings. Manual tuning of these parameters is not feasible. An evolutionary multiobjective algorithm based on decomposition for solving this problem is proposed. To address the dynamic nature of this problem we consider the hybridization between an adaptive heuristics and the multiobjective algorithm. The proposed approach outperforms state of the art algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahadori, S., Kafi, S., Far, K.Z., Khayyambashi, M.R.: Optimal web service composition using hybrid ga-tabu search. Journal of Theoretical and Applied Information Technology 9(1) (2009)Google Scholar
  2. 2.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware service composition based on genetic algorithms. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)Google Scholar
  4. 4.
    Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent Developments. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 3–29. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chiang, T.-C., Lai, Y.-P.: Moea/d-ams: Improving moea/d by an adaptive mating selection mechanism. In: IEEE Congress on Evolutionary Computation, CEC 2011, pp. 1473–1480. IEEE (2011)Google Scholar
  6. 6.
    Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs, K.: Heuristic Approaches for QoS-Based Service Selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 441–455. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evolutionary Computation 15(1), 4–31 (2011)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)CrossRefGoogle Scholar
  10. 10.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)CrossRefGoogle Scholar
  11. 11.
    Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Adaptation of Scalarizing Functions in MOEA/D: An Adaptive Scalarizing Function-Based Multiobjective Evolutionary Algorithm. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 438–452. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Jiang, S., Cai, Z., Zhang, J., Ong, Y.-S.: Multiobjective optimization by decomposition with pareto-adaptive weight vectors. In: ICNC, pp. 1260–1264 (2011)Google Scholar
  13. 13.
    Kathrin, K., Tind, J.: Constrained optimization using multiple objective programming. Journal of Global Optimization 37, 325–355 (2007)MATHCrossRefGoogle Scholar
  14. 14.
    Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: Congress on Evolutionary Computation, pp. 443–450 (2005)Google Scholar
  15. 15.
    Li, L., Cheng, P., Ou, L., Zhang, Z.: Applying Multi-objective Evolutionary Algorithms to QoS-Aware Web Service Composition. In: Cao, L., Zhong, J., Feng, Y. (eds.) ADMA 2010, Part II. LNCS, vol. 6441, pp. 270–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Liu, B., Fernández, F.V., Zhang, Q., Pak, M., Sipahi, S., Gielen, G.G.E.: An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing. In: IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)Google Scholar
  17. 17.
    Liu, X., Xu, Z., Yang, L.: Independent global constraints-aware web service composition optimization based on genetic algorithm. In: IASTED International Conference on Intelligent Information Systems, pp. 52–55 (2009)Google Scholar
  18. 18.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1-2), 61–106 (2010)CrossRefGoogle Scholar
  19. 19.
    Parejo, J.A., Fernandez, P., Cortes, A.R.: Qos-aware services composition using tabu search and hybrid genetic algorithms. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos 2(1), 55–66 (2008)Google Scholar
  20. 20.
    Pop, F.-C., Pallez, D., Cremene, M., Tettamanzi, A., Suciu, M.A., Vaida, M.-F.: Qos-based service optimization using differential evolution. In: GECCO, pp. 1891–1898 (2011)Google Scholar
  21. 21.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)CrossRefGoogle Scholar
  22. 22.
    Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, Inc., Orlando (2006)MATHGoogle Scholar
  23. 23.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Taboada, H.A., Espiritu, J.F., Coit, D.W.: MOMS-GA: A Multi-Objective Multi-State Genetic Algorithm for System Reliability Optimization Design Problems. IEEE Transactions on Reliability 57(1), 182–191 (2008)CrossRefGoogle Scholar
  25. 25.
    Vanrompay, Y., Rigole, P., Berbers, Y.: Genetic algorithm-based optimization of service composition and deployment. In: Proceedings of the 3rd International Workshop on Services Integration in Pervasive Environments, SIPE 2008, pp. 13–18 (2008)Google Scholar
  26. 26.
    Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective Optimization of SLA-Aware Service Composition. In: Proceedings of the 2008 IEEE Congress on Services - Part I, SERVICES 2008, pp. 368–375. IEEE Computer Society (2008)Google Scholar
  27. 27.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evolutionary Computation 15(1), 55–66 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yao, Y., Chen, H.: QoS-aware service composition using NSGA-II. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, ICIS 2009, pp. 358–363 (2009)Google Scholar
  29. 29.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30, 311–327 (2004)CrossRefGoogle Scholar
  30. 30.
    Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 11, 712–731 (2007)CrossRefGoogle Scholar
  31. 31.
    Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evolutionary Computation 16(3), 442–446 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mihai Suciu
    • 1
  • Denis Pallez
    • 2
  • Marcel Cremene
    • 3
  • Dumitru Dumitrescu
    • 1
  1. 1.Babes-Bolyai UniversityCluj NapocaRomania
  2. 2.University of Nice Sophia-AntipolisFrance
  3. 3.Technical University of Cluj-NapocaRomania

Personalised recommendations