Generalizing Hyper-heuristics via Apprenticeship Learning
- 8 Citations
- 1.3k Downloads
Abstract
An apprenticeship-learning-based technique is used as a hyper-heuristic to generate heuristics for an online combinatorial problem. It observes and learns from the actions of a known-expert heuristic on small instances, but has the advantage of producing a general heuristic that works well on other larger instances. Specifically, we generate heuristic policies for online bin packing problem by using expert near-optimal policies produced by a hyper-heuristic on small instances, where learning is fast. The ”expert” is a policy matrix that defines an index policy, and the apprenticeship learning is based on observation of the action of the expert policy together with a range of features of the bin being considered, and then applying a k-means classification. We show that the generated policy often performs better than the standard best-fit heuristic even when applied to instances much larger than the training set.
Keywords
Hyper-heuristics learning by demonstration apprenticeship learning generalizationPreview
Unable to display preview. Download preview PDF.
References
- 1.Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, pp. 1–8. ACM, New York (2004)CrossRefGoogle Scholar
- 2.Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press (2004)Google Scholar
- 3.Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: A survey of the state of the art. Tech. Rep. No. NOTTCS-TR-SUB-0906241418-2747, School of Computer Science and Information Technology, University of Nottingham (2010)Google Scholar
- 4.Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A Classification of Hyper-heuristic Approaches. In: Handbook of Metaheuristics. International Series in Operations Research & Management Science. Springer (2009)Google Scholar
- 5.Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: The scalability of evolved on line bin packing heuristics. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 2530–2537. IEEE Computational Intelligence Society, IEEE Press, Singapore (2007)CrossRefGoogle Scholar
- 6.Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1559–1565. ACM, New York (2007)CrossRefGoogle Scholar
- 7.Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-Rodriguez, J.: Hyflex: A flexible framework for the design and analysis of hyper-heuristics. In: Proceedings of the Multidisciplinary International Scheduling Conference (MISTA 2009), pp. 790–797 (2009)Google Scholar
- 8.Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 9.Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and parametric learning combinations of local job shop scheduling rules. ONR Research memorandum No. 117, GSIA, Carnegie Mellon University, Pittsburgh (1963)Google Scholar
- 10.Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Industrial Scheduling, pp. 225–251. Prentice-Hall (1963)Google Scholar
- 11.Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic as a general problem solver: An implementation in HyFlex. Journal of Scheduling (2012)Google Scholar
- 12.Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 13.Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics. Intell. Data Anal. 12, 3–23 (2008)Google Scholar
- 14.Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 2011–2018. ACM, New York (2011)Google Scholar
- 15.Parkes, A.J., Özcan, E., Hyde, M.R.: Matrix Analysis of Genetic Programming Mutation. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 158–169. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 16.Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 17, pp. 529–556. Springer (2005)Google Scholar
- 17.Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1295–1306. Springer, Heidelberg (2003)CrossRefGoogle Scholar