Reconciliation Revisited: Handling Multiple Optima When Reconciling with Duplication, Transfer, and Loss

  • Mukul S. Bansal
  • Eric J. Alm
  • Manolis Kellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7821)

Abstract

Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While Duplication-Loss (DL) reconciliation leads to a unique maximum-parsimony solution, Duplication-Transfer-Loss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult the infer the true evolutionary history of the gene family.

Here, we present an effective, efficient, and scalable method for dealing with this fundamental problem in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn 2) time, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mapping and event assignments, and to investigate the impact of varying event costs.

Keywords

Gene family evolution gene-tree/species-tree reconciliation gene duplication horizontal gene transfer host-parasite cophylogeny phylogenetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Storm, C.E.V., Sonnhammer, E.L.L.: Automated ortholog inference from phylogenetic trees and calculation of orthology reliability. Bioinformatics 18(1), 92–99 (2002)CrossRefGoogle Scholar
  2. 2.
    Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annual Review of Genetics 39(1), 309–338 (2005)CrossRefGoogle Scholar
  3. 3.
    Wapinski, I., Pferrer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007)CrossRefGoogle Scholar
  4. 4.
    van der Heijden, R., Snel, B., van Noort, V., Huynen, M.: Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinformatics 8(1), 83 (2007)CrossRefGoogle Scholar
  5. 5.
    Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Research 19(2), 327–335 (2009)CrossRefGoogle Scholar
  6. 6.
    Sennblad, B., Lagergren, J.: Probabilistic orthology analysis. Syst. Biol. 58(4), 411–424 (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, K., Durand, D., Farach-Colton, M.: Notung: dating gene duplications using gene family trees. In: RECOMB, pp. 96–106 (2000)Google Scholar
  8. 8.
    David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469, 93–96 (2011)CrossRefGoogle Scholar
  9. 9.
    Rasmussen, M.D., Kellis, M.: A bayesian approach for fast and accurate gene tree reconstruction. Molecular Biology and Evolution 28(1), 273–290 (2011)CrossRefGoogle Scholar
  10. 10.
    Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: Inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)CrossRefGoogle Scholar
  11. 11.
    Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage. a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)CrossRefGoogle Scholar
  12. 12.
    Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)Google Scholar
  13. 13.
    Bonizzoni, P., Vedova, G.D., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theor. Comput. Sci. 347(1-2), 36–53 (2005)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Górecki, P., Tiuryn, J.: Dls-trees: A model of evolutionary scenarios. Theor. Comput. Sci. 359, 378–399 (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gorbunov, K.Y., Liubetskii, V.A.: Reconstructing genes evolution along a species tree. Molekuliarnaia Biologiia 43(5), 946–958 (2009)Google Scholar
  17. 17.
    Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Tofigh, A., Hallett, M.T., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biology Bioinform. 8(2), 517–535 (2011)CrossRefGoogle Scholar
  19. 19.
    Tofigh, A.: Using Trees to Capture Reticulate Evolution: Lateral Gene Transfers and Cancer Progression. PhD thesis, KTH Royal Institute of Technology (2009)Google Scholar
  20. 20.
    Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biology Bioinform. 9(5), 1515–1528 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), 283–291 (2012)CrossRefGoogle Scholar
  22. 22.
    Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), 409–415 (2012)CrossRefGoogle Scholar
  23. 23.
    Charleston, M.: Jungles: A new solution to the host-parasite phylogeny reconciliation problem. Mathematical Biosciences 149, 191–223 (1998)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ronquist, F.: Parsimony analysis of coevolving species associations. In: Page, R.D.M. (ed.) Tangled Trees: Phylogeny, Cospeciation and Coevolution, pp. 22–64. The University of Chicago Press (2003)Google Scholar
  25. 25.
    Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinformatics 11(suppl. 1), S60 (2010)Google Scholar
  26. 26.
    Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem. Algorithm. Mol. Biol. 5(1), 16 (2010)CrossRefGoogle Scholar
  27. 27.
    Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is np-complete. J. Comput. Biol. 18(1), 59–65 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rutschmann, F.: Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers. Distrib. 12(1), 35–48 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mukul S. Bansal
    • 1
  • Eric J. Alm
    • 2
    • 3
  • Manolis Kellis
    • 1
    • 3
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Dept. of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Broad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations