Virtual Spatiality in Agent Controllers: Encoding Compartmentalization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7835)


Applying methods of artificial evolution to synthesize robot controllers for complex tasks is still a challenging endeavor. We report an approach which might have the potential to improve the performance of evolutionary algorithms in the context of evolutionary robotics. We apply a controller concept that is inspired by signaling networks found in nature. The implementation of spatial features is based on Voronoi diagrams that describe a compartmentalization of the agent’s inner body. These compartments establish a virtual embodiment, including sensors and actuators, and influence the dynamics of virtual hormones. We report results for an exploring task and an object discrimination task. These results indicate that the controller, that determines the principle hormone dynamics, can successfully be evolved in parallel with the compartmentalizations, that determine the spatial features of the sensors, actuators, and hormones.


Voronoi Diagram Hormone Concentration Anchor Point Voronoi Region Proximity Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B.: Molecular biology of the cell. Garland Pub. (1989)Google Scholar
  2. 2.
    Aurenhammer, F.: Voronoi diagrams — a survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)CrossRefGoogle Scholar
  4. 4.
    Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1(1), 91–122 (1992)CrossRefGoogle Scholar
  5. 5.
    Bray, D.: Wetware: A Computer in Every Living Cell. Yale University Press (2009)Google Scholar
  6. 6.
    Dale, K., Husbands, P.: The evolution of reaction-diffusion controllers for minimally cognitive agents. Artificial Life 16(1), 1–19 (2010)CrossRefGoogle Scholar
  7. 7.
    Hamann, H., Schmickl, T., Crailsheim, K.: A hormone-based controller for evaluation-minimal evolution in decentrally controlled systems. Artificial Life 18(2), 165–198 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D., Darnell, J.E.: Molecular Cell Biology, 5th edn. W.H. Freeman and Company (2003)Google Scholar
  9. 9.
    Moioli, R., Vargas, P.A., Husbands, P.: Exploring the kuramoto model of coupled oscillators in minimally cognitive evolutionary robotics tasks. In: WCCI 2010 IEEE World Congress on Computational Intelligence - CEC IEEE, pp. 2483–2490 (2010)Google Scholar
  10. 10.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems 57, 345–370 (2009)CrossRefGoogle Scholar
  11. 11.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press (2000)Google Scholar
  12. 12.
    Schmickl, T., Hamann, H., Crailsheim, K.: Modelling a hormone-inspired controller for individual- and multi-modular robotic systems. Mathematical and Computer Modelling of Dynamical Systems 17(3), 221–242 (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Schmickl, T., Hamann, H., Stradner, J., Crailsheim, K.: Hormone-based control for multi-modular robotics. In: Levi, P., et al. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, pp. 240–263. Springer (2010)Google Scholar
  14. 14.
    Schoenauer, M., Kallel, L., Jouve, F.: Mechanical inclusions identification by evolutionary computation (1996)Google Scholar
  15. 15.
    Stradner, J., Hamann, H., Schmickl, T., Crailsheim, K.: Analysis and implementation of an artificial homeostatic hormone system: A first case study in robotic hardware. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 595–600. IEEE Press (2009)Google Scholar
  16. 16.
    Voronoi, G.: Nouvelles applications des paramétres continus à la théorie des formes quadratiques. Journal für Reine und Angewandte Mathematik 133, 97–178 (1907)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Artificial Life Laboratory of the Department of ZoologyKarl-Franzens University GrazGrazAustria
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany
  3. 3.Institute for Evolution and EcologyUniversity of TübingenTübingenGermany

Personalised recommendations