EvoSpace: A Distributed Evolutionary Platform Based on the Tuple Space Model

  • Mario García-Valdez
  • Leonardo Trujillo
  • Francisco Fernández de Vega
  • Juan J. Merelo Guervós
  • Gustavo Olague
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7835)


This paper presents EvoSpace, a Cloud service for the development of distributed evolutionary algorithms. EvoSpace is based on the tuple space model, an associatively addressed memory space shared by several processes. Remote clients, called EvoWorkers, connect to EvoSpace and periodically take a subset of individuals from the global population, perform evolutionary operations on them, and return a set of new individuals. Several EvoWorkers carry out the evolutionary search in parallel and asynchronously, interacting with each other through the central repository. EvoSpace is designed to be domain independent and flexible, in the sense that in can be used with different types of evolutionary algorithms and applications. In this paper, a genetic algorithm is tested on the EvoSpace platform using a well-known benchmark problem, achieving promising results compared to a standard evolutionary system.


Distributed Evolutionary Algorithms Tuple Space Cloud Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Bollini, A., Piastra, M.: Distributed and persistent evolutionary algorithms: A design pattern. In: Proceedings of the Second European Workshop on Genetic Programming, pp. 173–183. Springer, London (1999)CrossRefGoogle Scholar
  3. 3.
    Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In: Proceedings of the European Conference on Artificial Life, pp. 144–148 (2011)Google Scholar
  4. 4.
    Cotillon, A., Valencia, P., Jurdak, R.: Android Genetic Programming Framework. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 13–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Garcia, M., Trujillo, L., Fernández-de-Vega, F., Merelo-Guervós, J.J., Olague, G.: EvoSpace-Interactive: A Framework to Develop Distributed Collaborative-Interactive Evolutionary Algorithms for Artistic Design. In. In: Proceedings of the 2nd International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, EvoMUSART (2013)Google Scholar
  6. 6.
    Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)zbMATHCrossRefGoogle Scholar
  7. 7.
    Klein, J., Spector, L.: Unwitting distributed genetic programming via asynchronous javascript and xml. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1628–1635. ACM, New York (2007)CrossRefGoogle Scholar
  8. 8.
    Langdon, W.B.: Global Distributed Evolution of L-Systems Fractals. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 349–358. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Merelo-Guervós, J.-J., Mora, A., Cruz, J.A., Esparcia, A.I.: Pool-Based Distributed Evolutionary Algorithms Using an Object Database. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 446–455. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Merelo-Guervos, J.J., Mora, A., Cruz, J.A., Esparcia-Alcazar, A.I., Cotta, C.: Scaling in distributed evolutionary algorithms with persistent population. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE Computer Society (June 2012)Google Scholar
  11. 11.
    Merelo Guervos, J.J., Valdivieso, P.A.C., Laredo, J.L.J., Garca, A.M., Prieto, A.: Asynchronous distributed genetic algorithms with javascript and json. In: IEEE Congress on Evolutionary Computation, pp. 1372–1379. IEEE (2008)Google Scholar
  12. 12.
    Morrison, R.W., De Jong, K.A.: Measurement of Population Diversity. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 31–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Roy, G., Lee, H., Welch, J.L., Zhao, Y., Pandey, V., Thurston, D.: A distributed pool architecture for genetic algorithms. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 1177–1184. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  14. 14.
    Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)CrossRefGoogle Scholar
  15. 15.
    Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4(4), 295–321 (1998)CrossRefGoogle Scholar
  16. 16.
    Thierens, D.: Scalability problems of simple genetic algorithms. Evolutionary Computation 7, 331–352 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mario García-Valdez
    • 1
  • Leonardo Trujillo
    • 1
  • Francisco Fernández de Vega
    • 2
  • Juan J. Merelo Guervós
    • 3
  • Gustavo Olague
    • 4
  1. 1.Instituto Tecnológico de TijuanaTijuanaMexico
  2. 2.Grupo de Evolución ArtificialUniversidad de ExtremaduraMéridaSpain
  3. 3.Universidad de GranadaGranadaSpain
  4. 4.Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico

Personalised recommendations