Advertisement

Adding Chaos to Differential Evolution for Range Image Registration

  • Ivanoe De Falco
  • Antonio Della Cioppa
  • Domenico Maisto
  • Umberto Scafuri
  • Ernesto Tarantino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7835)

Abstract

This paper presents a method for automatically pair–wise registering range images. Registration is effected adding chaos to a Differential Evolution technique and by applying the Grid Closest Point algorithm to find the best possible transformation of the second image causing 3D reconstruction of the original object. Experimental results show the capability of the method in picking up efficient transformations of images with respect to the classical Differential Evolution. The proposed method offers a good solution to build complete 3D models of objects from 3D scan datasets.

Keywords

Image Registration Range Image Rigid Transformation Range Image Registration Grid Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. IOP Publishing Ltd. (1997)Google Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: A method for registration of 3–d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Chow, K.W., Tsui, T.: Surface registration using a dynamic genetic algorithm. Pattern Recognition 37, 105–117 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Cordón, O., Damas, S., Santamaría, J., Martí, R.: Scatter search for the point-matching problem in 3D image registration. Informs J. on Computing 20(1), 55–68 (2008)MATHCrossRefGoogle Scholar
  5. 5.
    Dalley, G., Flynn, P.: Pair-wise range image registration: a study in outlier classification. Computer Vision and Image Understanding 87(1-3), 104–115 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Damas, S., Cordón, O., Santamaría, J.: Medical image registration using evolutionary computation: An experimental survey. IEEE Computational Intelligence Magazine 6(4), 26–42 (2011)CrossRefGoogle Scholar
  7. 7.
    De Falco, I., Della Cioppa, A., Iazzetta, A., Tarantino, E.: An evolutionary approach for automatically extracting intelligible classification rules. Knowledge and Information Systems 7(2), 179–201 (2005)CrossRefGoogle Scholar
  8. 8.
    De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Satellite Image Registration by Distributed Differential Evolution. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 251–260. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    De Falco, I., Della Cioppa, A., Maisto, D., Tarantino, E.: Differential evolution as a viable tool for satellite image registration. Applied Soft Computing 8(4), 1453–1462 (2008)CrossRefGoogle Scholar
  10. 10.
    De Falco, I., Maisto, D., Scafuri, U., Tarantino, E., Della Cioppa, A.: Distributed differential evolution for the registration of remotely sensed images. In: 15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing, pp. 358–362. IEEE (2007)Google Scholar
  11. 11.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)MATHGoogle Scholar
  12. 12.
    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3–18 (2011)CrossRefGoogle Scholar
  13. 13.
    He, R., Narayana, P.A.: Global optimization of mutual information: application to three–dimensional retrospective registration of magnetic resonance images. Comput. Med. Imag. Grap. 26, 277–292 (2002)CrossRefGoogle Scholar
  14. 14.
    Lomonosov, E., Chetverikov, D., Ekárt, A.: Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Lett. 27(11), 1201–1208 (2006)CrossRefGoogle Scholar
  15. 15.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artificial Intelligence Review 33(1), 61–106 (2010)CrossRefGoogle Scholar
  16. 16.
    Ohio State University: SAMPL image repository (2009), http://sampl.eng.ohio-state.edu/~sampl/database.htm
  17. 17.
    Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer (2004)Google Scholar
  18. 18.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer (2005)Google Scholar
  19. 19.
    Rodrigues, M., Fisher, R., Liu, Y.: Introduction: Special issue on registration and fusion of range images. Computer Vision and Image Understanding 87, 1–7 (2002)CrossRefGoogle Scholar
  20. 20.
    Rusinkiewicz, S., Levoy, M.: Efficient variant of the icp algorithm. In: Third International Conference on 3–D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  21. 21.
    Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing 25(5), 578–596 (2007)CrossRefGoogle Scholar
  22. 22.
    Santamaría, J., Cordón, O., Damas, S.: A comparative study of state–of–the–art evolutionary image registration methods for 3d modeling. Computer Vision and Image Understanding 115(9), 1340–1354 (2011)CrossRefGoogle Scholar
  23. 23.
    Santamaría, J., Cordón, O., Damas, S., Aleman, I., Botella, M.: A scatter search-based technique for pair-wise 3d range image registration in forensic anthropology. Soft Computing-A Fusion of Foundations, Methodologies and Applications 11(9), 819–828 (2007)Google Scholar
  24. 24.
    Silva, L., Bellon, O.R.P., Boyer, K.L.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Transactions on Pattern Analysis 27(5), 762–776 (2005)CrossRefGoogle Scholar
  25. 25.
    Yamany, S.M., Ahmed, M.N., Heyamed, E.E., Farag, A.A.: Novel surface registration using the grid closest point (cgp) transform. In: Int. Conf. on Image Processing, vol. 3, pp. 809–813. IEEE Press (1998)Google Scholar
  26. 26.
    Yu, G., Wang, X., Li, P.: Application of chaotic theory in differential evolution algorithms. In: Sixth International Conference on Natural Computation, vol. 7, pp. 3816–3820. IEEE Press (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ivanoe De Falco
    • 1
  • Antonio Della Cioppa
    • 2
  • Domenico Maisto
    • 1
  • Umberto Scafuri
    • 1
  • Ernesto Tarantino
    • 1
  1. 1.ICAR-CNRNaplesItaly
  2. 2.Natural Computation Lab, DIEMUniversity of SalernoFiscianoItaly

Personalised recommendations