Usage Patterns of Trading Rules in Stock Market Trading Strategies Optimized with Evolutionary Methods

  • Krzysztof Michalak
  • Patryk Filipiak
  • Piotr Lipinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7835)


This paper proposes an approach to analysis of usage patterns of trading rules in stock market trading strategies. Analyzed strategies generate trading decisions based on signals produced by trading rules. Weighted sets of trading rules are used with parameters optimized using evolutionary algorithms. A novel approach to trading rule pattern discovery, inspired by association rule mining methods, is proposed. In the experiments, patterns consisting of up to 5 trading rules were discovered which appear in no less than 50% of trading experts optimized by evolutonary algorithm.


stock market trading rules evolutionary computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, R.: Genetic Algorithms and Investment Strategies. Wiley, Chichester (1994)Google Scholar
  2. 2.
    Bauer, R.J., Dahlquist, J.R.: Technical Markets Indicators: Analysis & Performance, p. 129. John Wiley & Sons (1998)Google Scholar
  3. 3.
    Best, M.J.: Portfolio Optimization. Chapman&Hall/CRC (2010)Google Scholar
  4. 4.
    Borgelt, C.: Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(6), 437–456 (2012)CrossRefGoogle Scholar
  5. 5.
    Chopra, D., Vishwakarma, D.: Efficient Frequent Item set Discovery Technique in Uncertain Data. International Journal of Engineering and Advanced Technology (IJEAT) 1(6) (2012)Google Scholar
  6. 6.
    Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive Trading with Grammatical Evolution. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 2587–2592. IEEE, Los Alamitos (2006)Google Scholar
  7. 7.
    Dempster, M., Jones, C.: A Real-Time Adaptive Trading System using Genetic Programming. Quantitative Finance 1, 397–413 (2001)CrossRefGoogle Scholar
  8. 8.
    Kirkpatrick, C.D., Dahlquist, J.R.: Technical Analysis: The Complete Resource for Financial Market Technicians, pp. 440–441. FT Press (2010)Google Scholar
  9. 9.
    Li, J., Taiwo, S.: Enhancing Financial Decision Making Using Multi-Objective Financial Genetic Programming. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2171–2178 (2006)Google Scholar
  10. 10.
    Lipinski, P.: Dependency Mining in Large Sets of Stock Market Trading Rules. In: Pejas, J., Piegat, A. (eds.) Enhanced Methods in Computer Security, Biometric and Intelligent Systems, pp. 329–336. Kluwer Academic Publishers (2005)Google Scholar
  11. 11.
    Lipinski, P.: Discovering Stock Market Trading Rules Using Multi-layer Perceptrons. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1114–1121. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Lipinski, P.: ECGA vs. BOA in Discoverying Stock Market Trading Experts. In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2007, pp. 531–538. ACM (2007)Google Scholar
  13. 13.
    Lipinski, P.: Evolutionary Strategies for Building Risk-Optimal Portfolios. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. SCI, vol. 100, pp. 53–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lipinski, P.: Frequent Knowledge Patterns in Evolutionary Decision Support Systems for Financial Time Series Analysis. In: Brabazon, A., O’Neill, M., Maringer, D.G. (eds.) Natural Computing in Computational Finance. SCI, vol. 293, pp. 131–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Michalak, K., Filipiak, P., Lipiński, P.: Evolutionary Approach to Multiobjective Optimization of Portfolios That Reflect the Behaviour of Investment Funds. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 202–211. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Michalak, K., Lipinski, P.: Prediction of high increases in stock prices using neural networks. Neural Network World 15(4), 359–366 (2005)Google Scholar
  17. 17.
    Park, B.J.: Efficient Tree-based Discovery of Frequent Itemsets. International Journal of Multimedia and Ubiquitous Engineering 7(2) (2012)Google Scholar
  18. 18.
    Radziukyniene, I., Zilinskas, A.: Evolutionary Methods for Multi-Objective Portfolio Optimization. In: Proceedings of the World Congress on Engineering 2008, pp. 1155–1159. Newswood Limited (2008)Google Scholar
  19. 19.
    Ranganatham, M.: Investment Analysis and Portfolio Management, pp. 387–388. Pearson Education (2004)Google Scholar
  20. 20.
    Schwager, J.D.: Technical Analysis. pp. 174–178. John Wiley & Sons (1995)Google Scholar
  21. 21.
    Srivastava, U.K., Shenoy, G.V., Sharma, S.C.: Quantitative Techniques For Managerial Decisions, pp. 392–394. New Age International (1989)Google Scholar
  22. 22.
    Tsang, E., Li, J., Markose, S., Er, H., Salhi, A., Iori, G.: EDDIE in Financial Decision Making. Journal of Management and Economics 4(4) (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Krzysztof Michalak
    • 1
  • Patryk Filipiak
    • 2
  • Piotr Lipinski
    • 2
  1. 1.Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland
  2. 2.Institute of Computer ScienceUniversity of WroclawWroclawPoland

Personalised recommendations