Advertisement

A Memetic Approach to Bayesian Network Structure Learning

  • Alberto Tonda
  • Evelyne Lutton
  • Giovanni Squillero
  • Pierre-Henri Wuillemin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7835)

Abstract

Bayesian networks are graphical statistical models that represent inference between data. For their effectiveness and versatility, they are widely adopted to represent knowledge in different domains. Several research lines address the NP-hard problem of Bayesian network structure learning starting from data: over the years, the machine learning community delivered effective heuristics, while different Evolutionary Algorithms have been devised to tackle this complex problem. This paper presents a Memetic Algorithm for Bayesian network structure learning, that combines the exploratory power of an Evolutionary Algorithm with the speed of local search. Experimental results show that the proposed approach is able to outperform state-of-the-art heuristics on two well-studied benchmarks.

Keywords

Memetic Algorithms Evolutionary Algorithms Local Optimization Bayesian Networks Model Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robinson, R.: Counting unlabeled acyclic digraphs. In: Little, C. (ed.) Combinatorial Mathematics V. Lecture Notes in Mathematics, vol. 622, pp. 28–43. Springer, Heidelberg (1977), 10.1007/BFb0069178Google Scholar
  2. 2.
    Chickering, D.M., Geiger, D., Heckerman, D.: Learning bayesian networks is np-hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, WA, USA (November 1994)Google Scholar
  3. 3.
    Cheng, J., Bell, D.A., Liu, W.: An algorithm for bayesian belief network construction from data. In: Proceedings of AI & STAT 1997, pp. 83–90 (1997)Google Scholar
  4. 4.
    Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992), 10.1007/BF00994110Google Scholar
  5. 5.
    Barriere, O., Lutton, E., Wuillemin, P.H.: Bayesian network structure learning using cooperative coevolution. In: Genetic and Evolutionary Computation Conference, GECCO 2009 (2009)Google Scholar
  6. 6.
    Wong, M.L., Lam, W., Leung, K.S.: Using evolutionary programming and minimum description length principle for data mining of bayesian networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(2), 174–178 (1999)CrossRefGoogle Scholar
  7. 7.
    Regnier-Coudert, O., McCall, J.: An Island Model Genetic Algorithm for Bayesian network structure learning. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (June 2012)Google Scholar
  8. 8.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. In: Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, RECOMB 2000, pp. 127–135. ACM, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Delaplace, A., Brouard, T., Cardot, H.: Computational intelligence and security, pp. 288–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Larranaga, P., Kuijpers, C., Murga, R., Yurramendi, Y.: Learning bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 26(4), 487–493 (1996)CrossRefGoogle Scholar
  11. 11.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn., vol. 1. The MIT Press (2001)Google Scholar
  12. 12.
    Druzdzel, M.J.: SMILE: Structural modeling, inference, and learning engine and GeNIe: A development environment for graphical decision-theoretic models. In: American Association for Artificial Intelligence, pp. 902–903 (1999)Google Scholar
  13. 13.
    Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic Evolutionary Algorithms. In: Hart, W.E., Smith, J., Krasnogor, N. (eds.) Recent Advances in Memetic Algorithms. STUDFUZZ, vol. 166, pp. 3–27. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Norman, M., Moscato, P.: A competitive and cooperative approach to complex combinatorial search. In: Proceedings of the 20th Informatics and Operations Research Meeting, pp. 3–15 (1991)Google Scholar
  15. 15.
    Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation 2, 1–14 (2012)CrossRefGoogle Scholar
  16. 16.
    Fan, X.F., Zhu, Z., Ong, Y.S., Lu, Y.M., Shen, Z.X., Kuo, J.L.: A direct first principles study on the structure and electronic properties of be x zn 1 − x o. Applied Physics Letters 91(12), 121121 (2007)Google Scholar
  17. 17.
    Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A probabilistic memetic framework. IEEE Transactions on Evolutionary Computation 13(3), 604–623 (2009)CrossRefGoogle Scholar
  18. 18.
    Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the uGP toolkit. Springer (2011)Google Scholar
  19. 19.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM Monitoring System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks. In: Second European Conference on Artificial Intelligence in Medicine, London, Great Britain, vol. 38, pp. 247–256. Springer, Berlin (1989)Google Scholar
  21. 21.
    Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Machine Learning 29 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alberto Tonda
    • 1
  • Evelyne Lutton
    • 2
  • Giovanni Squillero
    • 3
  • Pierre-Henri Wuillemin
    • 4
  1. 1.INRA UMR 782 GMPAThiverval-GrignonFrance
  2. 2.INRIA Saclay-Ile-de-France, AVIZ teamOrsay CedexFrance
  3. 3.Politecnico di Torino, DAUINTorinoItaly
  4. 4.LIP6 - Département DÉSIRParis

Personalised recommendations