Mining for Variability in the Coagulation Pathway: A Systems Biology Approach

  • Davide Castaldi
  • Daniele Maccagnola
  • Daniela Mari
  • Francesco Archetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7833)


In this paper authors perform a variability analysis of a Stochastic Petri Net (SPN) model of the Tissue Factor induced coagulation cascade, one of the most complex biochemical networks. This pathway has been widely analyzed in literature mostly with ordinary differential equations, outlining the general behaviour but without pointing out the intrinsic variability of the system. The SPN formalism can introduce uncertainty to capture this variability and, through computer simulation allows to generate analyzable time series, over a broad range of conditions, to characterize the trend of the main system molecules. We provide a useful tool for the development and management of several observational studies, potentially customizable for each patient. The SPN has been simulated using Tau-Leaping Stochastic Simulation Algorithm, and in order to simulate a large number of models, to test different scenarios, we perform them using High Performance Computing. We analyze different settings for model representing the cases of “healthy” and different “unhealthy” subjects, comparing and testing their variability in order to gain valuable biological insights.


Systems Biology Variability Analysis Coagulation Stochastic Simulation Petri Nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform. 9(5), 404–421 (2008)CrossRefGoogle Scholar
  2. 2.
    Bungay, S.: Modelling the effect of amplification pathway factors on thrombin generation: A comparison of hemophilias. Transfus. Apher. Sci. 38, 41–47 (2008)CrossRefGoogle Scholar
  3. 3.
    Butenas, S., van’t Veer, C., Mann, K.G.: “Normal” Thrombin Generation. Blood 94(7), 2169–2178 (1999)Google Scholar
  4. 4.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient stepsize selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044109 (2006)Google Scholar
  5. 5.
    Cevenini, E., Bellavista, E., Tieri, P., Castellani, G., Lescai, F., Francesconi, M., Mishto, M., Santoro, A., Valensin, S., Salvioli, S., Capri, M., Zaikin, A., Monti, D., de Magalhaes, J.P., Franceschi, C.: Systems biology and longevity: an emerging approach to identify innovative anti-aging targets and strategies. Curr. Pharm. Des. 16(7), 802–813 (2010)CrossRefGoogle Scholar
  6. 6.
    Chu, A.J.: Tissue factor, blood coagulation, and beyond: an overview. Int. J. Inflam. 367284, 1–30 (2011)CrossRefGoogle Scholar
  7. 7.
    Corlan, A.D., Ross, J.: Canalization effect in the coagulation cascade and the interindividual variability of oral anticoagulant response. A simulation study. Theor. Biol. Med. Model. 8, 37 (2011)CrossRefGoogle Scholar
  8. 8.
    Dittamo, C., Cangelosi, D.: Optimized Parallel Implementation of Gillespie’s First Reaction Method on Graphics Processing Units. In: International Conf. on Computer Modeling and Simulation (ICCMS 2009), pp. 156–161 (2009)Google Scholar
  9. 9.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)CrossRefGoogle Scholar
  11. 11.
    Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Nat. Acad. Sci. USA 95, 6750–6754 (1998)CrossRefGoogle Scholar
  12. 12.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Khanin, M.A., Rakov, D.V., Kogan, A.E.: Mathematical model for the blood coagulation prothrombin time test. Thromb. Res. 89(5), 227–232 (1998)CrossRefGoogle Scholar
  14. 14.
    Levine, E., Hwa, T.: Stochastic fluctuations in metabolic pathways. PNAS 104(22), 9224–9229 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Li, H., Petzold, L.: Efficient Parallelization of the Stochastic Simulation Algorithm for Chemically Reacting Systems on the Graphics Processing Unit. Int. J. of High Perf. Comp. Appl. 24, 107–116 (2010)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Jiang, P., Capkova, K., Xue, D., Ye, L., Sinha, S.C., Mackman, N., Janda, K.D., Liu, C.: Tissue Factor Activated Coagulation Cascade in the Tumor Microenvironment Is Critical for Tumor Progression and an Effective Target for Therapy. Cancer Res. 71, 6492–6502 (2011)CrossRefGoogle Scholar
  17. 17.
    Monroe, D.M., Key, N.S.: The tissue factor-factor VIIa complex: procoagulant activity, regulation, and multitasking. J. Thromb. Haemost. 5(6), 1097–1105 (2007); ReviewGoogle Scholar
  18. 18.
    Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs. In: Soule, T. (ed.) Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion (GECCO Companion 2012), pp. 1421–1422. ACM, New York (2012)CrossRefGoogle Scholar
  19. 19.
    Reininger, A.J., Bernlochner, I., Penz, S.M., Ravanat, C., Smethurst, P., Farndale, R.W., Gachet, C., Brandl, R., Siess, W.: A 2-Step Mechanism of Arterial Thrombus Formation Induced by Human Atherosclerotic Plaques. J. Am. Coll. Cardiol. 55, 1147–1158 (2010)CrossRefGoogle Scholar
  20. 20.
    Rohr, C., Marwan, W., Heiner, M.: Snoopy—a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)CrossRefGoogle Scholar
  21. 21.
    Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: StochKit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)CrossRefGoogle Scholar
  22. 22.
    Shaw, O., Steggles, J., Wipat, A.: Automatic Parameterization of Stochastic Petri Net Models of Biological Networks. Electronic Notes in Theoretical Computer Science 151, 111–129 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Davide Castaldi
    • 1
  • Daniele Maccagnola
    • 1
  • Daniela Mari
    • 2
    • 3
  • Francesco Archetti
    • 1
    • 4
  1. 1.DISCoUniversity of Milan-BicoccaMilanItaly
  2. 2.IRCCS Cà Granda Ospedale Maggiore Policlinico FoundationMilanItaly
  3. 3.Department of Clinical Sciences and Community HealthUniversity of MilanItaly
  4. 4.Consorzio Milano RicercheMilanItaly

Personalised recommendations