Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms

  • Andreea Radulescu
  • Manuel López-Ibáñez
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7811)

Abstract

An algorithm that returns as low-cost solutions as possible at any moment of its execution is said to have a good anytime behaviour. The problem of optimising anytime behaviour can be modelled as a bi-objective non-dominated front, where the goal is to minimise both time and cost. Using a unary quality measure such as the hypervolume indicator, the analysis of the anytime behaviour can be converted into a single-objective problem. In this manner, available automatic configuration tools can be applied to improve the anytime behaviour of an algorithm. If we want to optimise the anytime behaviour of multi-objective algorithms, we may apply again unary quality measures to obtain a scalar value for measuring the obtained approximation to the Pareto front. Thus, for multi-objective algorithms, the anytime behaviour may be described in terms of the curve of the hypervolume over time, and the quality of this bi-objective tradeoff curve be evaluated according to its hypervolume. Using this approach, we can automatically improve the anytime behaviour of multi-objective evolutionary algorithms (MOEAs). In this article, we first introduce this approach and then experimentally study the improvements obtained considering three MOEAs, namely, IBEA, NSGA-II and SPEA2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)MATHCrossRefGoogle Scholar
  2. 2.
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search spaces. Complex Systems 9(2), 115–148 (1995)MathSciNetMATHGoogle Scholar
  4. 4.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. TR 112, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland (2001)Google Scholar
  6. 6.
    Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)CrossRefGoogle Scholar
  7. 7.
    Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE Press, Piscataway (2006)Google Scholar
  8. 8.
    Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Berlin (2012)Google Scholar
  9. 9.
    Hoos, H.H.: Programming by optimization. Communications of the ACM 55(2), 70–80 (2012)CrossRefGoogle Scholar
  10. 10.
    Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)Google Scholar
  11. 11.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)MATHGoogle Scholar
  12. 12.
    Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. European Journal of Operational Research 209(2), 104–112 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  14. 14.
    López-Ibáñez, M., Knowles, J., Laumanns, M.: On Sequential Online Archiving of Objective Vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    López-Ibáñez, M., Liao, T., Stützle, T.: On the Anytime Behavior of IPOP-CMA-ES. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 357–366. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of optimisation algorithms. Tech. Rep. TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium (2012)Google Scholar
  17. 17.
    Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  18. 18.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83 (1996)Google Scholar
  19. 19.
    Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control, pp. 95–100. CIMNE, Barcelona (2002)Google Scholar
  21. 21.
    Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar
  22. 22.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreea Radulescu
    • 1
  • Manuel López-Ibáñez
    • 2
  • Thomas Stützle
    • 2
  1. 1.LINA, UMR CNRS 6241Université de NantesNantesFrance
  2. 2.IRIDIA, CoDEUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations