Advertisement

Social Coordination Assessment: Distinguishing between Shape and Timing

  • Emilie Delaherche
  • Sofiane Boucenna
  • Koby Karp
  • Stéphane Michelet
  • Catherine Achard
  • Mohamed Chetouani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7742)

Abstract

In this paper, we propose a new framework to assess temporal coordination (synchrony) and content coordination (behavior matching) in dyadic interaction. The synchrony module is dedicated to identify the time lag and possible rhythm between partners. The imitation module aims at assessing the distance between two gestures, based on 1-Class SVM models. These measures discriminate significantly conditions where synchrony or behavior matching occurs from conditions where these phenomenons are absent. Moreover, these measures are unsupervised and could be implemented online.

Keywords

Behavior matching synchrony unsupervised model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux, S., Cohen, D.: Interpersonal synchrony: A survey of evaluation methods across disciplines. IEEE Transactions on Affective Computing 3(3), 349–365 (2012)CrossRefGoogle Scholar
  2. 2.
    Prepin, K., Pelachaud, C.: Shared understanding and synchrony emergence: Synchrony as an indice of the exchange of meaning between dialog partners. In: ICAART 2011 International Conference on Agent and Artificial Intelligence, vol. 2, pp. 25–30 (2011)Google Scholar
  3. 3.
    Bernieri, F., Rosenthal, R.: Interpersonal coordination: Behavior matching and interactional synchrony. In: Fundamentals of Nonverbal Behavior, pp. 401–432. Cambridge University Press (1991)Google Scholar
  4. 4.
    Sun, X., Nijholt, A.: Multimodal embodied mimicry in interaction. In: Esposito, A., Vinciarelli, A., Vicsi, K., Pelachaud, C., Nijholt, A. (eds.) Communication and Enactment 2010. LNCS, vol. 6800, pp. 147–153. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Chartrand, T.L., Bargh, J.A.: The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology 76(6), 893–910 (1999)CrossRefGoogle Scholar
  6. 6.
    Muir, D., Nadel, J.: Infant social perception. In: Slater, A. (ed.) Perceptual Development, pp. 247–285. Psychology Press (1998)Google Scholar
  7. 7.
    Murray, L., Trevarthen, C.: Emotional regulation of interactions between two-month-olds and their mothers. In: Field, T.M., Fox, N. (eds.) Social Perception in Infants, pp. 177–197. Ablex, Norwood (1985)Google Scholar
  8. 8.
    Altmann, U.: Investigation of movement synchrony using windowed cross-lagged regression. In: Esposito, A., et al. (eds.) Communication and Enactment 2010. LNCS, vol. 6800, pp. 335–345. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Andry, P., Gaussier, P., Moga, S., Banquet, J., Nadel, J.: Learning and communication in imitation: An autonomous robot perspective. IEEE Transactions on Systems, Man and Cybernetics, Part A 31(5), 431–444 (2001)CrossRefGoogle Scholar
  10. 10.
    Boucenna, S., Gaussier, P., Andry, P.: What should be taught first: the emotional expression or the face? In: 8th International Conference on Epigenetic Robotics (EPIROB), Lucs (2008)Google Scholar
  11. 11.
    Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)CrossRefGoogle Scholar
  12. 12.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (June 2008)Google Scholar
  13. 13.
    Li, F.F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, pp. 524–531 (2005)Google Scholar
  14. 14.
    Dollr, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS, pp. 65–72 (2005)Google Scholar
  15. 15.
    Canu, S., Smola, A.J.: Kernel methods and the exponential family. Neurocomputing 69, 714–720 (2005)CrossRefGoogle Scholar
  16. 16.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kadri, H., Davy, M., Rabaoui, A., Lachiri, Z., Ellouze, N.: Robust Audio Speaker Segmentation using One Class SVMs. In: Proceedings of the EURASIP EUSIPCO 2008, Suisse (2008)Google Scholar
  18. 18.
    Prince, C.G., Hollich, G.J., Helder, N.A., Mislivec, E.J., Reddy, A., Salunke, S., Memon, N.: Taking synchrony seriously: A perceptual level model of infant synchrony detection. In: Proceedings of the Fourth International Workshop on Epigenetic Robotics, pp. 89–96 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emilie Delaherche
    • 1
  • Sofiane Boucenna
    • 1
  • Koby Karp
    • 1
  • Stéphane Michelet
    • 1
  • Catherine Achard
    • 1
  • Mohamed Chetouani
    • 1
  1. 1.Institute of Intelligent Systems and RoboticsUniversity Pierre and Marie CurieParisFrance

Personalised recommendations