Abstract

Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p ∈ ]0,1] and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far.

In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with nonnegative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in pseudo-polynomial time.

References

  1. 1.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-Time Rewards Model-Checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Daum, M., Engel, B., Härtig, H., Klein, J., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: Waiting for Locks: How Long Does It Usually Take? In: Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 47–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  4. 4.
    Bianco, A., de Alfaro, L.: Model Checking of Probabilistic and Nondeterministic Systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Courcoubetis, C.A., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)Google Scholar
  7. 7.
    de Alfaro, L.: Temporal Logics for the Specification of Performance and Reliability. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science, LICS, pp. 454–465. IEEE Press (1998)Google Scholar
  9. 9.
    de Alfaro, L.: Computing Minimum and Maximum Reachability Times in Probabilistic Systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The Complexity of Solving Reachability Games Using Value and Strategy Iteration. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 77–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)MATHCrossRefGoogle Scholar
  13. 13.
    Jurdziński, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed automata with one or two clocks. Logical Methods in Computer Science 4(3) (2008)Google Scholar
  14. 14.
    Laroussinie, F., Sproston, J.: Model Checking Durational Probabilistic Systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Pekergin, N., Younès, S.: Stochastic Model Checking with Stochastic Comparison. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-FM 2005. LNCS, vol. 3670, pp. 109–123. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, FOCS, pp. 327–338. IEEE Press (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Ummels
    • 1
  • Christel Baier
    • 2
  1. 1.Institute of Transportation SystemsGerman Aerospace CenterGermany
  2. 2.Technische Universität DresdenGermany

Personalised recommendations