Advertisement

Type-Based Complexity Analysis for Fork Processes

  • Emmanuel Hainry
  • Jean-Yves Marion
  • Romain Péchoux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7794)

Abstract

We introduce a type system for concurrent programs described as a parallel imperative language using while-loops and fork/wait instructions, in which processes do not share a global memory, in order to analyze computational complexity. The type system provides an analysis of the data-flow based both on a data ramification principle related to tiering discipline and on secure typed languages. The main result states that well-typed processes characterize exactly the set of functions computable in polynomial space under termination, confluence and lock-freedom assumptions. More precisely, each process computes in polynomial time so that the evaluation of a process may be performed in polynomial time on a parallel model of computation. Type inference of the presented analysis is decidable in linear time provided that basic operator semantics is known.

Keywords

Implicit Computational Complexity Tiering Secure Information Flow Concurrent Programming PSpace 

References

  1. 1.
    Amadio, R.M., Dabrowski, F.: Feasible reactivity for synchronous cooperative threads. Electron. Notes Theor. Comput. Sci. 154(3), 33–43 (2006)CrossRefGoogle Scholar
  2. 2.
    Amadio, R.M., Dabrowski, F.: Feasible reactivity in a synchronous pi-calculus. In: Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, PPDP 2007, pp. 221–230. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Biba, K.: Integrity considerations for secure computer systems. Technical report, Mitre corp Rep. (1977)Google Scholar
  4. 4.
    Buss, S.R.: The boolean formula value problem is in ALOGTIME. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 123–131. ACM, New York (1987)Google Scholar
  5. 5.
    Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cockett, R., Redmond, B.: A categorical setting for lower complexity. Electron. Notes Theor. Comput. Sci. 265, 277–300 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gaboardi, M., Marion, J.-Y., Ronchi Della Rocca, S.: A logical account of PSPACE. In: POPL 2008, pp. 121–131. ACM (2008)Google Scholar
  8. 8.
    Jones, N.D.: The expressive power of higher-order types or, life without cons. J. Funct. Program. 11(1), 5–94 (2001)CrossRefGoogle Scholar
  9. 9.
    Jones, N.D., Kristiansen, L.: A flow calculus of wp-bounds for complexity analysis. ACM Trans. Comput. Log. 10(4) (2009)Google Scholar
  10. 10.
    Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1-2), 163–180 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dal Lago, U., Di Giamberardino, P.: Soft session types. In: EXPRESS 2011. EPTCS, vol. 64, pp. 59–73 (2011)Google Scholar
  13. 13.
    Dal Lago, U., Martini, S., Sangiorgi, D.: Light logics and higher-order processes. In: EXPRESS 2010. EPTCS, vol. 41, pp. 46–60 (2010)Google Scholar
  14. 14.
    Leivant, D., Marion, J.-Y.: Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Leivant, D., Marion, J.-Y.: Predicative Functional Recurrence and Poly-Space. In: Bidoit, M., Dauchet, M. (eds.) TAPSOFT 1997. LNCS, vol. 1214, pp. 369–380. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Madet, A.: A polynomial time lambda-calculus with multithreading and side effects. In: PPDP (2012)Google Scholar
  17. 17.
    Marion, J.-Y.: A type system for complexity flow analysis. In: LICS, pp. 123–132 (2011)Google Scholar
  18. 18.
    Moyen, J.-Y.: Resource control graphs. ACM Trans. Comput. Logic 10(4), 29:1–29:44 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polynomial space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected Areas in Communications 21(1), 5–19 (2003)CrossRefGoogle Scholar
  21. 21.
    Savitch, W.J.: Relationship between nondeterministic and deterministic tape classes. JCSS 4, 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language. In: POPL, pp. 355–364. ACM (1998)Google Scholar
  23. 23.
    Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis. Journal of Computer Security 4(2/3), 167–188 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuel Hainry
    • 1
  • Jean-Yves Marion
    • 1
  • Romain Péchoux
    • 1
  1. 1.Université de Lorraine and LORIAFrance

Personalised recommendations