Separation Logic for Non-local Control Flow and Block Scope Variables

  • Robbert Krebbers
  • Freek Wiedijk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7794)


We present an approach for handling non-local control flow (goto and return statements) in the presence of allocation and deallocation of block scope variables in imperative programming languages.

We define a small step operational semantics and an axiomatic semantics (in the form of a separation logic) for a small C-like language that combines these two features, and which also supports pointers to block scope variables. Our operational semantics represents the program state through a generalization of Huet’s zipper data structure.

We prove soundness of our axiomatic semantics with respect to our operational semantics. This proof has been fully formalized in Coq.


Operational Semantic Separation Logic Hoare Logic Reduction Path Program Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Appel, A.W.: Tactics for Separation Logic (2006),
  2. 2.
    Appel, A.W., Blazy, S.: Separation Logic for Small-Step Cminor. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Chlipala, A.: Mostly-automated verification of low-level programs in computational separation logic. In: PLDI, pp. 234–245. ACM (2011)Google Scholar
  4. 4.
    Dijkstra, E.W.: Go To statement considered harmful. Communications of the ACM 11(3), 147–148 (1968); Letter to the EditorMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In: POPL, pp. 533–544 (2012)Google Scholar
  6. 6.
    Felleisen, M., Hieb, R.: The Revised Report on the Syntactic Theories of Sequential Control and State. Theoretical Computer Science 103(2), 235–271 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Huet, G.P.: The Zipper. Journal of Functional Programming 7(5), 549–554 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    International Organization for Standardization. ISO/IEC 9899-2011: Programming languages – C. ISO Working Group 14 (2012)Google Scholar
  9. 9.
    Knuth, D.: Structured programming with go to statements. In: Classics in software engineering, pp. 257–321. Yourdon Press (1979)Google Scholar
  10. 10.
    Krebbers, R., Wiedijk, F.: A Formalization of the C99 Standard in HOL, Isabelle and Coq. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS (LNAI), vol. 6824, pp. 301–303. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning 43(4), 363–446 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Leroy, X.: The CompCert verified compiler, software and commented proof (2012),
  13. 13.
    Norrish, M.: C formalised in HOL. PhD thesis, University of Cambridge (1998)Google Scholar
  14. 14.
    O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local Reasoning about Programs that Alter Data Structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 1–19. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    von Oheimb, D.: Hoare Logic for Mutual Recursion and Local Variables. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 168–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Parkinson, M.J., Bornat, R., Calcagno, C.: Variables as Resource in Hoare Logics. In: LICS, pp. 137–146 (2006)Google Scholar
  17. 17.
    Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. Mathematical Structures in Computer Science 21(4), 795–825 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tews, H.: Verifying Duff’s device: A simple compositional denotational semantics for Goto and computed jumps (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robbert Krebbers
    • 1
  • Freek Wiedijk
    • 1
  1. 1.ICISRadboud University NijmegenThe Netherlands

Personalised recommendations