Advertisement

Some Sahlqvist Completeness Results for Coalgebraic Logics

  • Fredrik Dahlqvist
  • Dirk Pattinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7794)

Abstract

This paper presents a first step towards completeness-via-canonicity results for coalgebraic modal logics. Specifically, we consider the relationship between classes of coalgebras for ω-accessible endofunctors and logics defined by Sahlqvist-like frame conditions. Our strategy is based on conjoining two well-known approaches: we represent accessible functors as (equational) quotients of polynomial functors and then use canonicity results for boolean algebras with operators to transport completeness to the coalgebraic setting.

Keywords

Modal logic coalgebraic modal logic canonicity completeness Sahlqvist formula 

References

  1. 1.
    Abramsky, S.: Coalgebras, Chu Spaces, and Representations of Physical Systems. CoRR, abs/0910.3959 (2009)Google Scholar
  2. 2.
    Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: A coalgebraic perspective. J. Log. Comput. 20(5), 991–1015 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bezhanishvili, N., Hodkinson, I.: Sahlqvist theorem for modal fixed point logic. Theoretical Computer Science 424, 1–19 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Scie., vol. 53. Cambridge University Press (2001)Google Scholar
  5. 5.
    de Rijke, M., Venema, Y.: Sahlqvist’s Theorem For Boolean Algebras With Operators With An Application To Cylindric Algebras. Studia Logica (1995)Google Scholar
  6. 6.
    Jónsson, B.: On the canonicity of Sahlqvist identities. Studia Logica 53(4), 473–492 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. part 1. Amer. J. Math. 33, 891–937 (1951)CrossRefGoogle Scholar
  8. 8.
    Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview. Theoretical Computer Science 412(38), 5070–5094 (2011); Special issue CMCS 2010MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kupke, C., Kurz, A., Venema, Y.: Completeness for the coalgebraic cover modality. Logical Methods in Computer Science 8(3) (2012)Google Scholar
  10. 10.
    Kurz, A., Leal, R.: Modalities in the Stone age: A comparison of coalgebraic logics. In: MFPS XXV, Oxford (2009)Google Scholar
  11. 11.
    Pattinson, D., Schröder, L.: Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 66–80. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rutten, J.J.M.M.: Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Schröder, L.: A Finite Model Construction for Coalgebraic Modal Logic. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 157–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Venema, Y.: Algebras and coalgebras. In: van Benthem, J., Blackburn, P., Wolter, F. (eds.) Handbook of Modal Logic. Elsevier (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fredrik Dahlqvist
    • 1
  • Dirk Pattinson
    • 1
  1. 1.Dept. of ComputingImperial College LondonUK

Personalised recommendations